Learn more about Search Results リポジトリ - Page 2

「Amazon SageMakerのトレーニングワークロードで、@remoteデコレータを使用してプライベートリポジトリにアクセスする」

「機械学習(ML)のワークロードを本番環境に展開しようとする顧客がますます増えているため、MLコードの開発ライフサイクルを短縮するための組織内での大きな取り組みが行われています多くの組織は、探索的スタイルではなく、Pythonのメソッドとクラスの形式で、本番環境に対応したスタイルでMLコードを記述することを好む...」

トロント大学の研究者たちは、3300万以上の細胞リポジトリ上で生成事前学習トランスフォーマーに基づいたシングルセル生物学のための基礎モデルであるscGPTを紹介しました

自然言語処理とコンピュータビジョンは、生成学習済みモデルが驚異的に成功した分野の例の一部です。特に、基盤モデルを構築するための実行可能な戦略は、様々な大規模データセットを事前学習されたトランスフォーマーと組み合わせることです。この研究では、言語と生物構造(テキストが遺伝子を構成し、それぞれ単語と細胞を特徴付ける)の関連性を引き出すことで、基盤モデルが細胞生物学と遺伝学のさらなる研究を促進する可能性を調査しています。研究者たちは、シングルセル配列データの増加するデータベースを横断する生成学習済みトランスフォーマーに基づくシングルセル生物学のための基盤モデルであるscGPTを構築する最前線にいます。結果は、事前学習された生成トランスフォーマーであるscGPTが、遺伝子と細胞に関連する重要な生物学的洞察を効率的に抽出することを示しています。転移学習を新たな方法で使用することで、スクリプトはさまざまなアプリケーションで改善することができます。これらの課題には、遺伝子ネットワークの推論、遺伝子の変異予測、およびマルチバッチ統合が含まれます。scGPTのソースコードを表示する。 一つ一つの細胞の詳細な特性を容易にし、疾患の発症機序の理解、特異的な細胞系譜の追跡、病原性の解明、および患者固有の治療アプローチの開発に貢献するシングルセルRNAシーケンシング(scRNA-seq)は、細胞性の異質性の調査、系譜の追跡、病原性の解明、および患者固有の治療アプローチの開発への道を切り拓きます。 シーケンシングデータの指数関数的な増加を考慮すると、これらの新しいトレンドを効果的に活用し、適応する方法を作成することが急務です。基盤モデルの生成学習は、この困難を克服するための効果的な戦略です。大規模なデータセットから学習する生成学習は、最近さまざまなドメインで驚異的な成功を収めています。人気のある用途には、自然言語生成(NLG)とコンピュータビジョンがあります。これらのベースラインモデルには、DALL-E2やGPT-4などがあります。これらは大規模な異種データセットでトランスフォーマーを事前学習し、特定の下流タスクとシナリオに簡単に適応できるという原則に基づいています。さらに、これらの事前学習された生成モデルは常にカスタムトレーニングされたモデルよりも優れた性能を発揮します。 研究者たちは、NLGの自己教師あり事前学習手法からヒントを得て、大量のシングルセルシーケンシングデータのモデリングを改善しています。自己注意トランスフォーマーは、テキストの入力トークンをモデリングするための有用で効率的なフレームワークであることが証明されています。 100万以上の細胞で生成学習を行うことにより、これらの科学者たちは、シングルセル基盤モデルであるscGPTを構築する初めての試みを提供しています。彼らは、方法論とエンジニアリングの問題の両方に対処し、大量のシングルセルオミックスデータの事前学習を行うための新しいアプローチを示しています。彼らは、数百のデータセットを格納するためのクイックアクセスを持つインメモリデータ構造を使用して、大量のデータに対処することができます。彼らはトランスフォーマーアーキテクチャを修正して、細胞と遺伝子の表現を同時に学習し、非順序のオミックスデータに適した統一された生成学習アプローチを構築します。また、事前学習モデルをさまざまな下流タスクで使用できるようにするために、モデルの微調整用にタスク固有の目的を持つ標準パイプラインも提供します。 これらの3つのコンポーネントを通じて、scGPTモデルはシングルセル基盤コンセプトの革新的なポテンシャルを示しています。それは、scGPTから始まる、さまざまな下流活動への転移学習をサポートする最初の大規模な生成基盤モデルです。彼らは、細胞型注釈、遺伝子変異予測、バッチ補正、およびマルチオミックス統合において最先端のパフォーマンスを達成することで、シングルセルオミクスの計算アプリケーションに対する「普遍的な事前学習、オンデマンドでの微調整」アプローチの有効性を実証しています。 特に、scGPTはscATAC-seqデータや他のシングルセルオミクスを組み込むことができる唯一のベースモデルです。第二に、scGPTは、洗練されたモデルと生の事前学習モデルの遺伝子の埋め込みと注意の重みを比較することで、特定の条件下での遺伝子間相互作用に関する重要な生物学的洞察を明らかにします。第三に、結果はスケーリングの法則を示しており、事前学習フェーズでより多くのデータを使用することにより、より良い事前学習埋め込みとより高い下流タスクのパフォーマンスが得られます。この発見は、基盤モデルが研究コミュニティに利用可能なシーケンシングデータがますます利用可能になるにつれて着実に改善する可能性を強調しています。これらの結果を踏まえて、彼らは、事前学習された基盤モデルを使用することで細胞生物学の知識を大幅に増やし、この分野の将来の進歩の基礎を築くことができるという仮説を立てています。scGPTモデルとワークフローを一般に公開することで、これらおよび関連する分野の研究が強化され、加速されます。 このスクリプトは、研究者によって説明されたように、大量のシングルセルデータを理解するために事前学習されたトランスフォーマーを使用する新しい生成学習済み基盤モデルです。chatGPTやGPT4などの言語モデルで、自己教師あり事前学習が効果的であることが証明されています。シングルセルの研究では、彼らは同じ戦略を使って複雑な生物学的な関係を解読しました。細胞の異なる側面をよりよくモデリングするために、scGPTはトランスフォーマーを使用して遺伝子と細胞の埋め込みを同時に学習します。シングルセルGPT(scGPT)は、トランスフォーマーの注意機構を使用して、シングルセルレベルでの遺伝子間相互作用を捉え、新しい解釈可能性の次元を追加します。 研究者は、ゼロショットとファインチューニングのシナリオでの包括的な研究を行い、事前トレーニングの価値を証明しました。訓練されたモデルは、任意のデータセットの特徴抽出器として既に機能します。ゼロショットの研究では、顕著な細胞塊が表示される印象的な外挿能力が示されました。さらに、scGPTの学習済み遺伝子ネットワークと以前に確立された機能関係の間には高い一致度があります。私たちは、遺伝子間相互作用を捉え、既知の生物学的情報を効果的に反映するモデルの適切な発見能力を信じています。また、いくつかのファインチューニングを行うことで、事前トレーニングされたモデルによって学習された情報をさまざまな後続タスクに活用することができます。最適化されたscGPTモデルは、セルタイプの注釈、マルチバッチ、マルチオミック統合といったタスクで、スクラッチからトレーニングされたモデルを定期的に上回ります。これにより、事前トレーニングされたモデルが精度と生物学的関連性を向上させることで、後続タスクへの利益が示されます。全体的に、テストはscGPTの事前トレーニングの有用性を示し、一般化能力、遺伝子ネットワークの把握、転移学習を活用した後続タスクの性能向上の能力を示しています。 主な特徴 ジェネラリスト戦略により、シングルセル研究において統合されたマルチオミック解析とパーティクル予測を単一のモデルで実行することができます。 学習済みの注意重みと遺伝子埋め込みを使用して、特定の条件下での遺伝子間相互作用を特定することができます。 データ量の増加とともにモデルの性能が持続的に向上するスケーリング則を特定しました。 scGPTモデルゾーには、さまざまな実質的な臓器用の多くの事前トレーニング済み基礎モデル(GitHub参照)と包括的なパンガンサーモデルがあります。最適な出発点モデルを使用してデータを探索を開始してください。 事前トレーニングは、マルチオミックデータ、空間オミックス、さまざまな疾患状態を含むより大規模なデータセットで行われることが期待されています。モデルは、パーティクルと時間軸データが事前トレーニングフェーズに含まれる場合、因果関係を学習し、遺伝子や細胞が時間経過に応答する方法を推定することができます。事前トレーニングモデルの学習内容をより理解し解釈するためには、広範な生物学的に有意なタスクでモデルを検証することが理想的です。さらに、単一細胞データのための文脈に関する知識を調査することを目指しています。事前トレーニングされたモデルは、ゼロショット構成で追加のファインチューニングなしで新しいジョブや環境に適応する必要があります。さまざまな研究の微妙さとユニークなニーズを理解するように教育することで、scGPTの有用性と適用範囲を多くの研究コンテキストで向上させることができます。事前トレーニングパラダイムは、シングルセル研究で容易に実装できると期待されており、急速に拡大するセルアトラスの蓄積された知識を活用するための基盤を築くものとなるでしょう。

RAGを使用したLLMパワードアプリケーションの開始ガイド

ODSCのウェビナーでは、PandataのNicolas Decavel-Bueff、そして私(カル・アル・ドーバイブ)とData Stack AcademyのParham Parviziが協力し、エンタープライズグレードの大規模な言語モデル(LLM)の構築から学んだ教訓と、データサイエンティストとデータエンジニアが始めるためのヒントを共有しました最大の...

マンバ:シーケンスモデリングの再定義とトランスフォーマーアーキテクチャの超越

「マンバの画期的なシーケンスモデリング手法を探求し、効率的な処理と先進的な状態空間メカニズムにより、従来のモデルを超えてくださいマンバとともに、AIの未来に飛び込んでください」

コンテナの力を解放する:あらゆる開発ニーズに対応するトップ20のDockerコンテナを探索する

イントロダクション Dockerコンテナは、ソフトウェア開発とデプロイメントの急速に進化する風景で欠かせないツールとして登場しました。アプリケーションをパッケージ化、配布、実行するための軽量かつ効率的な方法を提供しています。この記事では、さまざまなカテゴリーでのトップ20のDockerコンテナについて詳しく説明し、その機能、使用例、開発ワークフローの合理化への貢献を紹介します。 Webサーバーとコンテンツ管理 Webサーバー Nginx Nginxは、優れたパフォーマンスと拡張性で称賛される多目的のWebサーバーおよびリバースプロキシです。軽量な構造と同時接続の適切な管理により、効率を求める開発者にとって上位の選択肢となっています。主な特徴には、堅牢な負荷分散機能、静的コンテンツの効率的な処理、高度なセキュリティ機能があります。その用途は、静的ウェブサイトの提供からマイクロサービスの負荷分散、アプリケーションサーバーのリバースプロキシまでさまざまです。 Apache HTTP Server Apache HTTP Serverは、Webサーバーのランドスケープでの草分けとして、動的なコンテンツの配信において堅固なオプションです。モジュラーデザインと豊富な設定可能性のために有名で、さまざまなアプリケーションに容易に適応できます。主な特徴には、包括的なモジュールサポート、優れた設定可能性、堅牢なコミュニティの支援があります。その用途は、動的ウェブサイトのホスティング、PHPアプリケーションの実行、さまざまなウェブベースのアプリケーションのバックエンドサーバーまで広がっています。 Traefik もう1つのDockerコンテナであるTraefikは、マイクロサービスアーキテクチャに特化した現代のリバースプロキシとロードバランサーです。動的な構成と自動的なサービスディスカバリーが魅力で、コンテナ化された環境に最適な選択肢となっています。主な特徴には、自動的なサービスディスカバリー、コンテナオーケストレーションツールとのシームレスな統合、Let’s Encryptのサポートが含まれており、SSL/TLS証明書の自動プロビジョニングを可能にします。その用途は、マイクロサービスの負荷分散や指定されたルールに基づいたトラフィックルーティングから、SSL/TLS証明書を自動的に管理することによるセキュアな通信の促進まで、現代のインフラストラクチャセットアップにおける重要なツールとなっています。 コンテンツ管理システム WordPress WordPressは、インターネットの大部分を支える支配的なコンテンツ管理システムです。WordPressをDocker化することで、展開を合理化し、拡張性のある環境でコンテンツ管理ニーズを効率化することができます。その大きな特徴は、広範なプラグインエコシステム、ユーザーフレンドリーなインターフェース、堅牢なコミュニティのサポートです。ブログやコンテンツ作成を支援するだけでなく、ビジネスウェブサイトの構築やオンラインコミュニティの監督など、さまざまなウェブ関連の活動に適応する柔軟なソリューションとなっています。 データベースとデータストア 関係性データベース MySQL MySQLは、広く使われているオープンソースの関係性データベースで、高速性と信頼性が評価されています。MySQLのDocker化は、さまざまなアプリケーションでのデータベースの設定と管理を簡素化します。ACID準拠、レプリケーションとクラスタリングの堅牢なサポート、高性能な機能が主な特徴です。その用途は、ウェブアプリケーションのバックエンドストレージ、eコマースプラットフォームのデータストレージの管理、コンテンツ管理システムのサポートなど、さまざまなドメインでのさまざまなストレージニーズの適応性を示しています。 PostgreSQL PostgreSQLは、拡張性と標準への厳格な準拠で称賛される堅牢なオープンソースの関係性データベースです。PostgreSQLのDocker化により、展開に柔軟性をもたらす移植可能なレプリケーション可能なデータベース環境が実現できます。その特徴には、カスタム関数と演算子による拡張性、データの信頼性を保証するACID準拠、複雑なクエリの強力なサポートが含まれます。その用途は、ジオグラフィック情報システム(GIS)のパワーリング、データウェアハウジングのニーズのサポート、金融アプリケーションの複雑な要件への対応など、厳密なデータ処理とクエリ処理機能を必要とするさまざまなドメインに広がっています。…

「Githubの使い方?ステップバイステップガイド」というテキスト

GitHubに登録するには、以下の6つの手順を守ってください ステップ1: GitHubにサインアップする ウェブサイトを訪問し、「サインアップ」ボタンをクリックします。 ユーザー名、メールアドレス、パスワードなどの情報を入力します。 入力が完了したら、メールを確認して、無料のGitHubアカウントを入手できます。 https://docs.github.com/en/get-started/quickstart/hello-world ステップ2: GitHub上でリポジトリを作成する GitHub上でリポジトリを作成する プロジェクト用のGitHubリポジトリを作成するには、以下の簡単な手順に従ってください: 1. GitHubページの右上隅に移動し、「+」サインをクリックし、「新しいリポジトリ」を選択します。 2. 「リポジトリ名」ボックスにリポジトリ名を入力します。 3. 「説明」ボックスに簡単な説明を追加します。 4. リポジトリが公開されるか非公開になるかを選択します。 5. 「READMEファイルを追加する」オプションをチェックします。 6. 「リポジトリを作成する」ボタンをクリックします。 このリポジトリは、ファイルの整理と保存、他の人との協力、GitHub上でのプロジェクトのショーケースに使用できます。…

「転移学習を探求しましょう…」(Ten’i gakushū o tankyū shimashou…)

転移学習については、多くの定義があります基本的には、事前学習済みモデルの知識を活用して新しい問題を解決することを指します転移学習には数多くの利点があります...

Pythonの地図を使って貿易流をビジュアライズする – 第1部:双方向貿易流マップ

商品やサービスの交換は、それらの対応する価値と引き換えに私たちの日常生活の重要な一部です同様に、国々はさまざまな種類の貿易関係を築いています

「ディープマインドのアルファコードの力を解き放つ:コードライティングの革命」

導入 プログラミングの常に進化し続ける世界では、先を行くことが成功への鍵です。DeepMindのAlphaCodeは、革新的なAIパワードツールとして、コードの書き方の分野でゲームチェンジャーとなっています。この記事では、AlphaCodeの能力、プログラミングへの応用、および業界への潜在的な影響について探っていきます。 競技プログラミングの力 競技プログラミングは、プログラミングスキルを磨くための人気のあるアプローチです。時間的制約内で複雑な問題を解決するというチャレンジを与えます。AlphaCodeは、リアルタイムの提案と最適化を提供することで、競技プログラミングを次のレベルに引き上げ、プログラマがより迅速かつ効果的にコードを書くことができるよう支援します。 DeepMindのAlphaCodeの理解 DeepMindのAlphaCodeは、効率的かつ高品質なコードの作成をプログラマに支援するために設計された高度なAIシステムです。AlphaCodeは機械学習アルゴリズムを活用して大量のコードを分析し、パターンを学習し、最適化されたコードのソリューションを生成する能力を持っています。 AIと競技プログラミングのパワーを組み合わせ、仮想アシスタントとして機能し、プログラマをコードの作成プロセスに導き、インテリジェントな提案を提供します。このAIツールは、Python、Java、C++などの幅広いプログラミング言語をサポートしており、AlphaCodeの能力をさまざまなドメインとプログラミングパラダイムで活用することができます。 AlphaCodeの動作原理 AlphaCodeの基本となる機械学習モデルは、広範なコードのリポジトリで訓練されており、プログラミングの概念やパターンを理解することができます。与えられた問題の文脈と要件を分析することで、AlphaCodeは最適化されたコードの断片を生成し、プログラマにとって貴重な時間と労力を節約します。 AlphaCodeの始め方 AlphaCodeを使い始めるためには、プログラマは好みの統合開発環境(IDE)にAlphaCodeプラグインをインストールする必要があります。このプラグインはIDEとシームレスに統合し、リアルタイムの提案と最適化を提供します。 AlphaCodeの利点と制約 AlphaCodeを利用する利点は多岐にわたります。まず第一に、最適化されたソリューションを提案することで、コードの効率性が大幅に向上します。第二に、潜在的なバグを特定し、代替の実装を提案することで、コードの品質を向上させます。最後に、繰り返しの作業にかかる時間を減らすことで、開発プロセスを加速させます。 AlphaCodeには、注目すべき能力がありますが、制約もあります。AlphaCodeは、トレーニングされるコードの品質と多様性に大きく依存しています。訓練データが偏っていたり不完全だったりすると、生成されたコードの正確性と信頼性に影響する可能性があります。また、AlphaCodeは、学習したパターンから大きく逸脱する高度に複雑な問題には苦労する場合があります。そのような場合には、人間の介入と専門知識が依然として貴重です。 プログラミングにおけるAlphaCodeの応用 DeepMindのAlphaCodeがあなたのプログラミングをどのようにサポートできるか、以下に示します: コードの効率化 AlphaCodeは最適化されたコードソリューションを生成する能力により、コードの効率性が大幅に向上します。AlphaCodeは広範な知識ベースを活用してアルゴリズムの改善策を提案し、時間と計算複雑性を削減します。たとえば、ソート問題の解決時には、バブルソートではなくクイックソートなど、より効率的なソートアルゴリズムを提案することがあります。これによりコードのパフォーマンスが向上し、ユーザーエクスペリエンス全体も向上します。 コードの品質向上 コードの品質はソフトウェア開発において極めて重要です。AlphaCodeは潜在的なバグを特定し、代替の実装を提案することで、プログラマがクリーンで保守性の高いコードを書くのを支援します。たとえば、プログラマがコードに誤りを誤って導入した場合、AlphaCodeはそれを検出し、修正版を提案できます。これにより、バグが見落とされるのを防ぎ、堅牢なソフトウェアの提供が確保されます。 開発プロセスの加速 時間はプログラミングにおいて貴重な資源です。AlphaCodeは繰り返しの作業を自動化し、リアルタイムの提案を提供することで、開発プロセスを加速させます。これによりプログラマは、高レベルの問題解決と革新に集中することができます。 AlphaCode vs…

「UnbodyとAppsmithを使って、10分でGoogle Meet AIアシスタントアプリを作る方法」

「ほぼコードなしで、Google Meetのビデオ録画を処理し、メモを作成し、アクションアイテムをキャプチャするAIのミーティングアシスタントアプリを開発する方法を学びましょう」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us