Learn more about Search Results ランキング - Page 2
- You may be interested
- クライテリオンを使用したRustコンパイラ...
- NLPとAIを利用したPythonにおけるテンプレ...
- 「Google CloudとNVIDIAが協力を更に進展...
- Pythonを使用して地理的な巡回セールスマ...
- 「ChatGPTは、ソフトウェアエンジニアリン...
- 効率的なコーディング:Pandasチェーン操...
- デジタル図書館とインターネットアーカイ...
- 天候の変化:AI、高速計算がより速く、効...
- Mozilla Common Voiceでの音声言語認識-第...
- 「水中ロボットが深海採鉱のためのハイテ...
- AWSにおけるマルチモデルエンドポイントの...
- 「AI を活用した脳手術が香港で現実化」
- この機械学習の研究では、データセット内...
- LangChain チートシート
- トゥギャザーエーアイは、トレーニング用...
「2023年、オープンLLMの年」
2023年には、大型言語モデル(Large Language Models、LLMs)への公衆の関心が急増しました。これにより、多くの人々がLLMsの定義と可能性を理解し始めたため、オープンソースとクローズドソースの議論も広範な聴衆に届くようになりました。Hugging Faceでは、オープンモデルに大いに興味を持っており、オープンモデルは研究の再現性を可能にし、コミュニティがAIモデルの開発に参加できるようにし、モデルのバイアスや制約をより簡単に評価できるようにし、チェックポイントの再利用によってフィールド全体の炭素排出量を低減するなど、多くの利点があります(その他の利点もあります)。 では、オープンLLMsの今年を振り返ってみましょう! 文章が長くなりすぎないようにするために、コードモデルには触れません。 Pretrained Large Language Modelの作り方 まず、大型言語モデルはどのようにして作られるのでしょうか?(もし既に知っている場合は、このセクションをスキップしてもかまいません) モデルのアーキテクチャ(コード)は、特定の実装と数学的な形状を示しています。モデルのすべてのパラメータと、それらが入力とどのように相互作用するかがリストとして表されます。現時点では、大部分の高性能なLLMsは「デコーダーのみ」トランスフォーマーアーキテクチャのバリエーションです(詳細は元のトランスフォーマーペーパーをご覧ください)。訓練データセットには、モデルが訓練された(つまり、パラメータが学習された)すべての例と文書が含まれています。したがって、具体的には学習されたパターンが含まれます。ほとんどの場合、これらの文書にはテキストが含まれており、自然言語(例:フランス語、英語、中国語)、プログラミング言語(例:Python、C)またはテキストとして表現できる構造化データ(例:MarkdownやLaTeXの表、方程式など)のいずれかです。トークナイザは、訓練データセットからテキストを数値に変換する方法を定義します(モデルは数学的な関数であり、したがって入力として数値が必要です)。トークン化は、テキストを「トークン」と呼ばれるサブユニットに変換することによって行われます(トークン化方法によっては単語、サブワード、または文字になる場合があります)。トークナイザの語彙サイズは、トークナイザが知っている異なるトークンの数を示しますが、一般的には32kから200kの間です。データセットのサイズは、これらの個々の「原子論的」単位のシーケンスに分割された後のトークンの数としてよく測定されます。最近のデータセットのサイズは、数千億から数兆のトークンに及ぶことがあります!訓練ハイパーパラメータは、モデルの訓練方法を定義します。新しい例ごとにパラメータをどれだけ変更すべきですか?モデルの更新速度はどのくらいですか? これらのパラメータが選択されたら、モデルを訓練するためには1)大量の計算パワーが必要であり、2)有能な(そして優しい)人々が訓練を実行し監視する必要があります。訓練自体は、アーキテクチャのインスタンス化(訓練用のハードウェア上での行列の作成)および上記のハイパーパラメータを使用して訓練データセット上の訓練アルゴリズムの実行からなります。その結果、モデルの重みが得られます。これらは学習後のモデルパラメータであり、オープンな事前学習モデルへのアクセスに関して多くの人々が話す内容です。これらの重みは、推論(つまり、新しい入力の予測やテキストの生成など)に使用することができます。 事前学習済みLLMsは、重みが公開されると特定のタスクに特化または適応することもあります。それらは、「ファインチューニング」と呼ばれるプロセスを介して、ユースケースやアプリケーションの出発点として使用されます。ファインチューニングでは、異なる(通常はより専門化された小規模な)データセット上でモデルに追加の訓練ステップを適用して、特定のアプリケーションに最適化します。このステップには、計算パワーのコストがかかりますが、モデルをゼロから訓練するよりも財政的および環境的にはるかにコストがかかりません。これは、高品質のオープンソースの事前学習モデルが非常に興味深い理由の一つです。コミュニティが限られたコンピューティング予算しか利用できない場合でも、自由に使用し、拡張することができます。 2022年 – サイズの競争からデータの競争へ 2023年以前、コミュニティで利用可能だったオープンモデルはありましたか? 2022年初頭まで、機械学習のトレンドは、モデルが大きければ(つまり、パラメータが多ければ)、性能が良くなるというものでした。特に、特定のサイズの閾値を超えるモデルは能力が向上するという考えがあり、これらの概念はemergent abilitiesとscaling lawsと呼ばれました。2022年に公開されたオープンソースの事前学習モデルは、主にこのパラダイムに従っていました。 BLOOM(BigScience Large Open-science…
『中にFunSearch:GoogleのDeepMindの新しいLLM、新しい数学とコンピューターサイエンスのアルゴリズムを見つけることができる』
新しい科学の発見は、AIモデルにとって最も完全なチューリングテストかもしれません新しい科学の方法には、多くの分野からの知識を組み合わせた複雑な推論スキルや、常に実験を行う必要があります...
高度なRAGテクニック:イラスト入り概要
この投稿の目標は、利用可能なRAGアルゴリズムとテクニックの概要と説明をすることなので、コードの実装の詳細には立ち入らず、参照のみ行い、それについては放置します
「2024年に使用するためのトップ10のリアルタイムデータベース」
導入 現代アプリケーションのダイナミックな世界において、リアルタイムデータベースはスムーズなデータ管理と即時の更新を維持するために重要です。大量のデータを扱うために設計されたこれらのデータベースは、情報への瞬時のアクセスを提供します。この記事では、2024年に影響を与えるであろうトップ10のリアルタイムデータベースについて詳しく説明します。 リアルタイムデータベースの理解 リアルタイムデータベースは即時の更新とアクセスが必要なデータを管理するために作成されています。同期の遅延が発生する従来のデータベースとは異なり、リアルタイムデータベースはすべての接続されたデバイスやアプリケーションにデータ変更の迅速な反映を保証します。これにより、リアルタイムのコラボレーション、メッセージング、モニタリングのニーズを持つアプリケーションに適しています。 現代アプリケーションにおけるリアルタイムデータベースの重要性 リアルタイムデータベースの重要性は、即時のデータ更新と同期の需要により、現代のアプリケーションで増大しています。メッセージングアプリから共同編集可能なドキュメントエディタ、リアルタイムアナリティクスダッシュボードまで、これらのデータベースはスムーズなデータ管理と瞬時のコミュニケーションの基盤となります。データ同期の遅延を解消することにより、リアルタイムデータベースはユーザーエクスペリエンスを向上させるだけでなく、効率的かつデータに基づく意思決定を可能にします。 トップ10のリアルタイムデータベース 以下は、2024年に使用するトップ10のリアルタイムデータベースのリストです。 1. Firebase リアルタイムデータベース Firebase リアルタイムデータベースはクラウドホスト型のNoSQLデータベースであり、開発者がデータをリアルタイムに保存および同期できるようにします。JSONデータモデルの使用は、開発プロセスに柔軟性と簡便さをもたらします。Firebaseプラットフォームの重要なコンポーネントとして、ウェブとモバイルの両方のアプリケーションを作成するための強力なツールキットに貢献します。 機能と利点 Firebase リアルタイムデータベースの優れた機能の1つは、データ変更があった場合にすべての接続されたデバイスで瞬時の更新が保証されるリアルタイム同期です。これにより、ユーザーは常に最新の情報を得ることが保証されます。さらに、データベースはオフラインサポートを提供し、インターネットに接続していない状況でもデータにアクセスおよび変更を行うことができます。Firebase リアルタイムデータベースは堅牢なセキュリティルールを取り入れており、機密データへの不正アクセスからデータを保護します。 ユースケースと例 Firebase リアルタイムデータベースは、チャットアプリ、共同編集可能なドキュメントエディタ、リアルタイムダッシュボードなど、リアルタイムの更新を要求するアプリケーションで広く使用されています。例えば、Firebase リアルタイムデータベースを活用したメッセージングアプリは、すべての参加者に迅速にメッセージを配信し、シームレスかつリアルタイムのコミュニケーション体験を作り出します。 こちらから入手できます: https://firebase.google.com/ 2.…
ルーシッドドリーマー:インターバルスコアマッチングを介した高品位のテキストから3D生成
最近のテキストから3DジェネレーティブAIフレームワークの進歩は、生成モデルにおける重要な節目を示していますこれらは、数多くの現実世界のシナリオで3Dアセットを作成する新たな可能性を開拓していますデジタル3Dアセットは現在、私たちのデジタル存在において不可欠な場所を占めており、複雑な環境やオブジェクトとの包括的な視覚化や対話を可能にしています
「AGIに向かって:LLMと基礎モデルが人生の学びの革命で果たす役割」
過去10年間、特にディープラーニングの成功を受けて、人工汎用知能(AGI)の構築の可能性について議論が続いています最終目標は...
ラストでクロスプラットフォームのTFIDFテキストサマライザーを構築する
NLPツールとユーティリティはPythonエコシステムで大幅に成長し、開発者はすべてのレベルで高品質な言語アプリをスケールさせることができるようになりましたRustはNLPにおいて比較的新しい導入された言語であり、...
『UC BerkeleyがAIフィードバックから強化学習を使って訓練されたオープンなLLMを発表』
新しいレポートでは、UCバークレーの研究者がReinforcement Learning from AI Feedback(RLAIF)を使って作成された革命的な大規模言語モデルであるStarling-7Bを紹介しています研究者たちは、このモデルが最先端の技術と手法を取り入れ、自然言語処理の領域を再定義する助けになることを期待しています研究者たちは、...
グーグルはコントロールを失っている – CTR操作から大量のAIコンテンツまで
人工知能(AI)の時代は私たちに迫っており、私たちの日常生活を形作り続けていますAIによるコンテンツの人気が高まる中、スマートなアルゴリズムが新しい記事から製品の説明まで作成を支援することができるようになりました最大の検索エンジンであるGoogleも、この革命から免れませんもし... Googleの制御を失う - CTR操作から大量のAIコンテンツへ続く記事を読む»
ジェンAIに関するトップ10の研究論文
イントロダクション 自然言語理解の常に進化する風景の中で、研究者たちは革新的なアプローチを通じて可能性の限界を em>押し上げることを続けています。本記事では、生成AI(GenAI)に関する画期的な研究論文のコレクションについて探求していきます。これらの研究は、人間の好みとの一致度向上からテキストの説明から3Dコンテンツを生成するという様々な側面にわたって言語モデルを探究しています。これらの研究は学術的な論議に貢献すると同時に、自然言語処理の未来を形作る可能性のある実践的な洞察を提供しています。これらの啓発的な調査を通じて旅を始めましょう。 GenAIに関するトップ10の研究論文 GenAIに関する数百の研究論文の中から、以下は私たちのトップ10の選り抜きです。 1. 生成プリトレーニングによる言語理解の向上 この研究論文は、非教示型のプリトレーニングと教示型のファインチューニングを組み合わせて自然言語理解タスクを強化するための半教師付きアプローチを探求しています。この研究では、Transformerアーキテクチャに基づいたタスクに依存しないモデルを利用しています。これにより、多様な未ラベルのテキストでの生成プリトレーニングとその後の識別的ファインチューニングによって、さまざまな言語理解ベンチマークでのパフォーマンスが大幅に向上することが明らかになりました。 このモデルは、常識的な推論において8.9%、質問応答において5.7%、テキスト言い換えにおいて1.5%といった注目すべき改善を達成しました。この研究は、大規模な未ラベルのコーパスをプリトレーニングに活用し、ファインチューニング中のタスクに意識した入力変換を行うことが、教師なし学習を自然言語処理や他の領域で進めるための貴重な洞察を提供しています。 論文はこちらで入手できます:https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf 2. 人間フィードバックを用いた強化学習:悲観主義を通じたダイナミックな選択の学習 この生成AIに関する研究論文は、オフラインでの人間フィードバックによる強化学習(RLHF)の難しい領域に深入りしています。この研究は、人間の選択に影響を受けたトラジェクトリの集合から、マルコフ決定過程(MDP)における人間の基盤と最適方策を把握することを目指しています。この研究は、経済計量学に根ざしたダイナミックディスクリートチョイス(DDC)モデルに焦点を当て、有界合理性を持った人間の意思決定をモデル化します。 提案されたDynamic-Choice-Pessimistic-Policy-Optimization(DCPPO)メソッドは、次の3つのステージで構成されています。それらは、人間の行動方針と価値関数の推定、人間の報酬関数の再現、および事実に近い最適方策のための悲観的価値反復の呼び出しです。この論文は、動的なディスクリートチョイスモデルによるオフポリシーオフラインRLHFについての理論的な保証を提供しています。分布のシフトや次元のサブオプティマリティの課題への対処についての洞察も提供しています。 論文はこちらで入手できます:https://arxiv.org/abs/2305.18438 3. ニューラル確率言語モデル この研究論文は、次元の呪いによって生じる統計的言語モデリングの課題に取り組み、未見の単語の連続列に対して一般化する難しさに焦点を当てています。提案された解決策は、単語の分散表現を学習することで、各トレーニング文がモデルに対して意味的に隣接する文について情報を提供することを可能にします。単語の表現と単語列の確率関数を同時に学習することで、モデルは一般化性能を向上させることができます。 ニューラルネットワークを用いた実験結果は、最先端のn-gramモデルに比べて大幅な改善を示しており、長い文脈を活用するアプローチの効果を示しています。論文は、学習された分散表現によって次元の課題に対処するモデルの能力を強調しながら、潜在的な将来の改善の可能性についても言及しています。 論文はこちらで入手できます:https://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf 4. BERT:言語理解のための深層双方向トランスフォーマーの事前学習 GenAIの研究論文では、未ラベル化されたテキストに対して双方向の事前学習を行うために設計された画期的な言語表現モデルであるBERTが紹介されています。従来のモデルとは異なり、BERTはすべてのレイヤーで左右の文脈に依存し、タスク固有の修正を最小限に抑えながら微調整を可能にします。BERTはさまざまな自然言語処理タスクで最先端の結果を実現し、その簡潔さと実証的なパワーを示しています。 この論文では既存の技術の制約に対処し、言語表現のための双方向の事前学習の重要性を強調しています。BERTのマスクされた言語モデル目的は、深い双方向のTransformer事前学習を促進し、タスク固有のアーキテクチャへの依存を減らし、11のNLPタスクの最先端の技術を前進させています。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.