Learn more about Search Results ヒートマップ - Page 2

大規模な言語モデル:DeBERTa — デコーディング強化BERTと解釈された注意力

最近、BERTは多くの自然言語処理の課題で第一のツールとなりました情報の処理と理解、高品質の単語埋め込みの構築能力に優れています…

「5つの簡単なステップでCSVから完全な分析レポートを作成するChatGPT」

データ分析は時間のかかる作業ですChatGPTを使えば、データの要約、データの前処理、データの可視化などを短時間で行うことができます

「包括的な時系列探索的分析」

「ここにはタイムスタンプでインデックスされたデータセットがありますデータはストレージの需要と供給に関するものかもしれませんが、あなたは戦略的な製品の適切な補充間隔を予測することが求められています...」

「ヒートラインプロットの作成方法」

おそらくヒートマップについて聞いたことがあるかもしれません通常、3つのデータ次元を表すために使用される、2Dカラーコードのグリッドです例えば、以下に示すヒートマップは平均気温を表示しています...

「Amazon Bedrock と Amazon Location Service を使用したジオスペーシャル生成AI」

今日、ジオスペーシャルのワークフローは、通常、データの読み込み、変換、そしてマップ、テキスト、またはチャートなどの視覚的インサイトの生成から構成されます生成AIは、これらのタスクを自律エージェントを介して自動化することができますこの投稿では、Amazon Bedrockの基本モデルを使用して、ジオスペーシャルタスクを完了するためにエージェントにパワーを与える方法について説明しますこれらのエージェントはさまざまなタスクを実行することができます[...]

わかりやすいYOLOv8 Eigen-CAMを使ったYOLOv8の結果の説明

私はYOLO(You Only Look Once)モデルの大ファンです、特にバージョン8が好きですそれは簡単に訓練して展開でき、医療画像領域でも使用できます最近、分類問題の解決に成功しました...

私の人生の統計:1年間習慣を追跡し、これが私が学んだことです

これはおそらく私が人生で行った中で最も長くて時間のかかる実験だと思いますその上、科学的な意義はほとんどありません - 人口サンプルはただ1人だけです - そして非常に...

「Amazon SageMakerを使用してビジョントランスフォーマーモデルのトレーニング時間を短縮するKTの取り組み」

KTコーポレーションは、韓国で最大の通信事業者の一つであり、固定電話、携帯通信、インターネット、AIサービスなど幅広いサービスを提供していますKTのAI Food Tagは、コンピュータビジョンモデルを使用して、写真に写った食品の種類と栄養成分を特定するAIベースの食事管理ソリューションです

「深層学習モデルの可視化方法」

ディープラーニングモデルは通常非常に複雑です多くの伝統的な機械学習モデルが数百のパラメータで済むことがありますが、ディープラーニングモデルは数百万または数十億のパラメータを持っていますオープンAIが2023年春にリリースした大規模言語モデルGPT-4は、約2兆のパラメータを持っていると噂されていますそれは・・・

ロボットが「グリップ」のアップグレードを取得:AO-Graspがロボットに物を落とさない技術を教えます!

近年、ロボットは製造業から医療まで、様々な産業でますます使用されています。しかし、彼らのタスクを遂行する効果は、環境との相互作用能力に大いに依存します。この相互作用の重要な側面の1つは、物体を掴む能力です。それがAO-Graspが登場する場所です-関節物体のために安定で信頼性のある掴みを生成するために設計された革新的な技術です。 AO-Graspは、合成および実世界のシナリオの両方で既存の手法よりも成功率を向上させ、ロボットがキャビネットや家電製品と効果的に相互作用することを可能にします。 研究者は、グラスプ計画の文献で自分たちを位置づけ、安定した掴みの必要性と、行動可能性に焦点を当てた関節物体との相互作用において、包括的な解決策が必要であることを強調しています。既存の研究では、音響的で多様な握持掴みの生成に関する包括的な解決策が必要です。それはしばしばグラスプの生成を単純化したり、非握持相互作用ポリシーに焦点を当てたりします。彼らの研究では、実世界での評価の欠如と、関節物体のための広範なグラスプデータセットの重要性にも言及しています。それはこのような物体を掴むことの難しさと、適切な掴みポイントのための局所幾何学の理解の必要性を強調しています。 提案された手法は、キャビネットや家電製品などの関節物体との相互作用の課題に取り組みます。そのような物体を掴むことは複雑であり、掴むことが安定し、実行可能であり、物体の関節構成に応じて掴むことが可能な領域が変化します。既存の研究は非関節物に焦点を当てているため、この論文ではAO-Graspデータセットとモデルを紹介し、関節物体上で安定した実行可能な掴みを生成するためのデータと方法を提供します。目的は、ロボットがこれらの物体とさまざまな操作タスクで効果的に相互作用できるようにすることです。 研究者は、関節物体上で安定した実行可能な掴みを生成するためのAO-Graspメソッドを提案しています。それは2つのコンポーネントで構成されています:実行可能な掴みポイント予測モデルと最先端の剛体オブジェクト掴みアプローチです。予測モデルは、48Kのシンセティック関節物体上の実行可能な掴みを含むAO-Graspデータセットを使用して最適な掴みポイントを見つけます。モデルの方向予測性能は、ACRONYMデータセットでトレーニングされたCGNモデルと比較され、トレーニングデータの違いが強調されます。彼らの手法はまた、予測モデルのトレーニングと過学習を防ぐための疑似サンプリングラベルの使用に関する課題にも取り組んでいます。 シミュレーションでは、AO-Graspは剛体および関節物体の既存のベースラインを上回る成功率を有しています。実世界のテストでは、そのシーンの67.5%で成功し、ベースラインの33.3%を超えています。AO-Graspは、さまざまな物体の状態とカテゴリにわたってContact-GraspNetとWhere2Actを常に上回ります。また、複数の可動部品を持つ物体に特に優れた掴みの可能性のヒートマップを生成します。閉じた状態では、CGNとの成功の差がより大きいため、AO-Graspは関節物体における効果的な方法です。AO-Graspは、訓練時に見かけないカテゴリに対して堅牢な汎化能力を示します。 結論として、AO-Graspは、シミュレーションおよび実世界のシナリオで既存のベースラインを上回る、関節物体上で安定した実行可能な掴みを生成するための非常に効果的なソリューションを提供します。この手法は、AO-Graspデータセット(48Kのシミュレートされた掴みを含む)を利用し、物体部品の意味論と幾何学からの先行知識を活用して、集中的な掴み領域を克服します。研究はまた、損失関数やサンプリング戦略などの貴重な実装の詳細も提供しており、この分野でのさらなる進歩への道を開いています。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us