Learn more about Search Results 24 - Page 283
- You may be interested
- 「人工知能生成コンテンツ(AIGC)におけ...
- 「AIの新機能:ChatGPTプラグインとインタ...
- データ測定ツールのご紹介:データセット...
- 「ScyllaDB NoSQLを使用したAI/MLフィーチ...
- 「最初のAIエージェントを開発する:Deep ...
- リアルタイムなSlackボットを生成的AIで構...
- 「データサイエンスは循環経済をどのよう...
- T5:テキスト対テキスト変換器(パート1)
- 新しいAI研究がMONAI Generative Modelsを...
- 「2023年に就職するために必要な10のビッ...
- 理解への足がかり:LLMとの解釈可能な継続...
- 最新のデータを使ってファンデーションモ...
- 統計力の解読:マーケティング研究におけ...
- ユーザーエクスペリエンスの向上:インタ...
- 「Snorkel AI x Hugging Face 企業向けの...
多言語での音声合成の評価には、SQuIdを使用する
Googleの研究科学者Thibault Sellamです。 以前、私たちは1000言語イニシアチブとUniversal Speech Modelを紹介しました。これらのプロジェクトは、世界中の何十億人ものユーザーに音声および言語技術を提供することを目的としています。この取り組みの一部は、多様な言語を話すユーザー向けにVDTTSやAudioLMなどのプロジェクトをベースにした高品質の音声合成技術を開発することにあります。 新しいモデルを開発した後は、生成された音声が正確で自然であるかどうかを評価する必要があります。コンテンツはタスクに関連し、発音は正確で、トーンは適切で、クラックや信号相関ノイズなどの音響アーティファクトはない必要があります。このような評価は、多言語音声システムの開発において大きなボトルネックとなります。 音声合成モデルの品質を評価する最も一般的な方法は、人間の評価です。テキストから音声(TTS)エンジニアが最新のモデルから数千の発話を生成し、数日後に結果を受け取ります。この評価フェーズには、聴取テストが含まれることが一般的で、何十もの注釈者が一つずつ発話を聴取して、自然な音に聞こえるかどうかを判断します。人間はテキストが自然かどうかを検出することでまだ敵わないことがありますが、このプロセスは実用的ではない場合があります。特に研究プロジェクトの早い段階では、エンジニアがアプローチをテストして再戦略化するために迅速なフィードバックが必要な場合があります。人間の評価は費用がかかり、時間がかかり、対象言語の評価者の可用性によって制限される場合があります。 進展を妨げる別の障壁は、異なるプロジェクトや機関が通常、異なる評価、プラットフォーム、およびプロトコルを使用するため、apple-to-applesの比較が不可能であることです。この点で、音声合成技術はテキスト生成に遅れを取っており、研究者らが人間の評価をBLEUや最近ではBLEURTなどの自動評価指標と補完して長年にわたって利用してきたテキスト生成から大きく遅れています。 「SQuId: Measuring Speech Naturalness in Many Languages」でICASSP 2023に発表する予定です。SQuId(Speech Quality Identification)という600Mパラメーターの回帰モデルを紹介します。このモデルは、音声がどの程度自然かを示します。SQuIdは、Googleによって開発された事前学習された音声テキストモデルであるmSLAMをベースにしており、42言語で100万件以上の品質評価をファインチューニングし、65言語でテストされました。SQuIdが多言語の評価において人間の評価を補完するためにどのように使用できるかを示します。これは、今までに行われた最大の公開努力です。 SQuIdによるTTSの評価 SQuIdの主な仮説は、以前に収集された評価に基づいて回帰モデルをトレーニングすることで、TTSモデルの品質を評価するための低コストな方法を提供できるということです。このモデルは、TTS研究者の評価ツールボックスに貴重な追加となり、人間の評価に比べて正確性は劣るものの、ほぼ即時に提供されます。 SQuIdは、発話を入力とし、オプションのロケールタグ(つまり、”Brazilian Portuguese”や”British English”などのローカライズされた言語のバリアント)を指定することができます。SQuIdは、音声波形がどの程度自然に聞こえるかを示す1から5までのスコアを返します。スコアが高いほど、より自然な波形を示します。 内部的には、モデルには3つのコンポーネントが含まれています:(1)エンコーダー、(2)プーリング/回帰層、および(3)完全接続層。最初に、エンコーダーはスペクトログラムを入力として受け取り、1,024サイズの3,200ベクトルを含む小さな2D行列に埋め込みます。各ベクトルは、時間ステップをエンコードします。プーリング/回帰層は、ベクトルを集約し、ロケールタグを追加し、スコアを返す完全接続層に入力します。最後に、アプリケーション固有の事後処理を適用して、スコアを再スケーリングまたは正規化して、自然な評価の範囲である[1、5]の範囲内に収まるようにします。回帰損失で全モデルをエンドツーエンドでトレーニングします。…
Imagen EditorとEditBench:テキストによる画像補完の進展と評価
グーグルリサーチの研究エンジニアであるスー・ワンとセズリー・モンゴメリーによる投稿 過去数年間、テキストから画像を生成する研究は、画期的な進展(特に、Imagen、Parti、DALL-E 2など)を見ており、これらは自然に関連するトピックに浸透しています。特に、テキストによる画像編集(TGIE)は、完全にやり直すのではなく、生成された物と撮影された視覚物を編集する実践的なタスクであり、素早く自動化されたコントロール可能な編集は、視覚物を再作成するのに時間がかかるか不可能な場合に便利な解決策です(例えば、バケーション写真のオブジェクトを微調整したり、ゼロから生成されたかわいい子犬の細かいディテールを完璧にする場合)。さらに、TGIEは、基礎となるモデルのトレーニングを改良する大きな機会を表しています。マルチモーダルモデルは、適切にトレーニングするために多様なデータが必要であり、TGIE編集は高品質でスケーラブルな合成データの生成と再結合を可能にすることができ、おそらく最も重要なことに、任意の軸に沿ってトレーニングデータの分布を最適化する方法を提供できます。 CVPR 2023で発表される「Imagen Editor and EditBench: Advancing and Evaluating Text-Guided Image Inpainting」では、マスクインペインティングの課題に対する最先端の解決策であるImagen Editorを紹介します。つまり、ユーザーが、編集したい画像の領域を示すオーバーレイまたは「マスク」(通常、描画タイプのインターフェイス内で生成されるもの)と共にテキスト指示を提供する場合のことです。また、画像編集モデルの品質を評価する方法であるEditBenchも紹介します。EditBenchは、一般的に使用される粗い「この画像がこのテキストに一致するかどうか」の方法を超えて、モデルパフォーマンスのより細かい属性、オブジェクト、およびシーンについて詳細に分析します。特に、画像とテキストの整合性の信頼性に強い重点を置きつつ、画像の品質を見失わないでください。 Imagen Editorは、指定された領域にローカライズされた編集を行います。モデルはユーザーの意図を意味を持って取り入れ、写真のようなリアルな編集を実行します。 Imagen Editor Imagen Editorは、Imagenでファインチューニングされた拡散ベースのモデルで、編集を行うために改良された言語入力の表現、細かい制御、および高品質な出力を目的としています。Imagen Editorは、ユーザーから3つの入力を受け取ります。1)編集する画像、2)編集領域を指定するバイナリマスク、および3)テキストのプロンプトです。これら3つの入力は、出力サンプルを誘導します。 Imagen Editorは、高品質なテキストによる画像インペインティングを行うための3つの核心技術に依存しています。まず、ランダムなボックスとストロークマスクを適用する従来のインペインティングモデル(例:Palette、Context…
デジタルルネッサンス:NVIDIAのNeuralangelo研究が3Dシーンを再構築
NVIDIA Researchによる新しいAIモデル、Neuralangeloは、ニューラルネットワークを使用して3D再構築を行い、2Dビデオクリップを詳細な3D構造に変換し、建物、彫刻、およびその他の現実世界のオブジェクトのリアルなバーチャルレプリカを生成します。 ミケランジェロが大理石のブロックから驚くべきリアルなビジョンを彫刻したように、Neuralangeloは複雑なディテールと質感を持つ3D構造を生成します。クリエイティブなプロフェッショナルは、これらの3Dオブジェクトをデザインアプリケーションにインポートし、アート、ビデオゲーム開発、ロボット工学、および産業用デジタルツインに使用するためにさらに編集することができます。 Neuralangeloは、屋根の瓦、ガラスの板、滑らかな大理石などの複雑な素材の質感を、従来の手法を大幅に上回る精度で2Dビデオから3Dアセットに変換することができます。この高い信頼性により、開発者やクリエイティブなプロフェッショナルは、スマートフォンでキャプチャされた映像を使用してプロジェクトに使用できる仮想オブジェクトを迅速に作成できます。 「Neuralangeloが提供する3D再構築機能は、クリエイターにとって大きな利益になります。現実世界をデジタル世界に再現するのを支援することで、開発者は小さな像や巨大な建築物などの詳細なオブジェクトを仮想環境にインポートできるようになります。」と、研究のシニアディレクターであり、論文の共著者でもあるMing-Yu Liu氏は述べています。 デモでは、NVIDIAの研究者が、ミケランジェロのダビデ像やフラットベッドトラックなどといったアイコニックなオブジェクトを再現する方法を紹介しました。Neuralangeloは、建物の内部および外部も再構築することができ、NVIDIAのベイエリアキャンパスの公園の詳細な3Dモデルで実証されました。 ニューラルレンダリングモデルが3Dで見る 3Dシーンを再構築するための以前のAIモデルは、繰り返しのテクスチャパターン、同質的な色、および強い色の変化を正確に捉えることができませんでした。Neuralangeloは、これらの微細なディテールを捉えるために、NVIDIA Instant NeRFの背後にある技術であるインスタントニューラルグラフィックスプリミティブを採用しています。 さまざまな角度から撮影されたオブジェクトまたはシーンの2Dビデオを使用して、モデルは異なる視点を捉えたいくつかのフレームを選択します。これは、アーティストが対象を多角的に考慮して深度、サイズ、および形状を把握するのと同じです。 フレームごとのカメラ位置が決定されたら、NeuralangeloのAIはシーンの大まかな3D表現を作成します。これは、彫刻家が主題の形を彫刻し始めるのと同じです。 次に、モデルはレンダリングを最適化してディテールをシャープにします。これは、彫刻家が石を注意深く削って布の質感や人物の形を再現するのと同じです。 最終的な結果は、仮想リアリティアプリケーション、デジタルツイン、またはロボット工学の開発に使用できる3Dオブジェクトまたは大規模なシーンです。 CVRPでNVIDIA Researchを見つける、6月18日〜22日 Neuralangeloは、6月18日から22日にバンクーバーで開催されるコンピュータビジョンとパターン認識のカンファレンス(CVRP)で発表されるNVIDIA Researchの約30のプロジェクトの1つです。これらの論文は、ポーズ推定、3D再構築、およびビデオ生成などのトピックをカバーしています。 これらのプロジェクトの1つであるDiffCollageは、長いランドスケープ方向、360度パノラマ、およびループモーション画像を含む大規模なコンテンツを作成する拡散法です。標準的なアスペクト比の画像のトレーニングデータセットをフィードすると、DiffCollageはこれらの小さな画像をコラージュのピースのように扱い、より大きなビジュアルのセクションとして扱います。これにより、拡散モデルは、同じスケールの画像のトレーニングを必要とせずに、継ぎ目のない大規模なコンテンツを生成できるようになります。 この技術は、テキストプロンプトをビデオシーケンスに変換することもできます。これは、人間の動きを捉える事前訓練された拡散モデルを使用して実証されました。 NVIDIA Researchについてもっと学ぶ。
データサイエンスのワークフローにChatGPTを統合する:ヒントとベストプラクティス
ChatGPT をデータサイエンスワークフローに統合したい場合は、以下の例とヒント、ベストプラクティスを参考にして、ChatGPT を最大限に活用してください
Rによるディープラーニング
このチュートリアルでは、Rで深層学習タスクを実行する方法を学びます
5つの複雑なSQL問題を解決する:トリッキーなクエリの説明
PythonからSQLに切り替える際に、15年のアナリティクスプロフェッショナルであるJosh Berryが経験した5つの難しい点例やSQLコードを提供し、SQLを自分のプロジェクトにカスタマイズするためのリソースを提供します
MLOpsを拡張するためのプレイブック
MLOpsチームは、AIを拡大するための能力を向上させるように圧力を受けています私たちはフォード・モーターと協力して、組織内でMLOpsを拡大する方法や、どのように始めるかを探ることにしました
機械学習モデルのための高度な特徴選択技術
特徴選択のマスタリング:教師あり・教師なし機械学習モデルの高度な技術の探求
AIの10年間のレビュー
画像分類からチャットボット療法まで
生きています!Pythonと安価で基本的なコンポーネントを使用して最初のロボットを構築してください
このガイドでは、コンピュータビジョン、ネットワーキング、計算などの真剣なロボット工学スキルを教えてくれる、楽しいロボットのおもちゃをいくつか作ります
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.