Learn more about Search Results Descript - Page 25
- You may be interested
- 「CEO氏によると、ホンダは東京で自動運転...
- 「データサイエンスにおけるリモートワー...
- 「VoAGI調査:データサイエンスの支出とト...
- バイトダンスとキング・アブドゥッラー科...
- ピーター・マッキー、Sonarの開発者担当責...
- 「AIが執筆プロセスに民主化をもたらして...
- In Japanese キャプチャを超えて:近代的...
- 「Pandasのスピードを向上させ、ミリ秒単...
- 医療界はAIに備えているのか? 医師、コ...
- 「Amazon SageMaker JumpStartを使用した...
- ロラハブにお会いしましょう:新しいタス...
- 「AIの求人市場の黙示録を避けるために:...
- 私が初めての#30DayChartChallengeを使っ...
- このAIニュースレターは、あなたが必要と...
- 「AIはどこで起こるのか?」
GitHubトピックススクレイパー | PythonによるWebスクレイピング
「GitHub Topics Scraper」このプロジェクトは、GitHub Topicsページから情報を取得し、リポジトリ名と詳細を抽出することを目的としています
テクニカルアーティストがNVIDIA Omniverse USD Composerを使用して、優れたウールリーマンモスを構築しました今週の「In the NVIDIA Studio」
Editor’s note: この記事は、週刊NVIDIA Studioシリーズの一環であり、注目のアーティストを紹介し、クリエイティブなヒントやトリックを提供し、NVIDIA Studioテクノロジーがクリエイティブなワークフローを改善する方法を示しています。 3Dを専門とするシニアテクニカルアーティストのKeerthan Sathyaは、信じられないほど詳細で、熟練した作り方で作られ、見事な美しさを誇るアニメーション「Tiny Mammoth」で、NVIDIA Studioの中で勝利した。 Sathyaは、Adobe Substance 3D Modeler、Painter、Autodesk 3ds Maxなどの人気のある3Dアプリのコレクションをプロジェクトで使用し、ステージング、環境の準備、ライティング、レンダリングは、NVIDIA OmniverseのUSD Composerアプリで完了しました。 さらに、3Dの服を作成、編集、再利用するためのMarvelous Designerソフトウェアが、NVIDIA Omniverse Connectorで発売されました。 Universal Scene Description(OpenUSD)フレームワークは、ブリッジとして機能し、ユーザーがOmniverse…
NVIDIAとHexagonが、産業のデジタル化を加速するためのソリューションスイートを提供します
産業企業がデジタル化の次のレベルに到達するためには、物理システムの正確なバーチャルな表現を作成する必要があります。 NVIDIAは、ストックホルムに拠点を置くデジタルリアリティソリューションのグローバルリーダーであるHexagonと協力し、AI対応のデジタルツインを構築するために必要なツールとソリューションを企業に提供しています。これにより、物理的に正確で完全に同期されたデジタルツインを作成し、組織を変革することができます。 Hexagonは、HxDRリアリティキャプチャとNexus製造プラットフォームからNVIDIA Omniverseに統合を構築しています。Omniverseは、Universal Scene Description(「OpenUSD」)プラグインを介して産業メタバースアプリケーションを開発および運用するためのオープンプラットフォームです。NVIDIA AIテクノロジーによって駆動される接続されたプラットフォームは、農業、自律移動、建物、都市、防衛、インフラ、製造、鉱業を含むHexagonの主要なエコシステム全体に利益をもたらします。 これらのソリューションにより、統一されたビューを通じてシームレスなコラボレーションプランニングが実現し、産業顧客はワークフローを最適化し、スケールを拡大することができます。プロフェッショナルや開発者は、リアリティキャプチャ、デジタルツイン、AI、シミュレーション、可視化の高度な機能を利用して、仮想プロトタイピングからデジタル工場まで最も複雑なグラフィックスワークフローを強化することができます。 物理世界とデジタル世界を融合した現実 製造業は、新製品を設計・開発する数百万の工場を世界中に有している46兆ドルの産業です。デジタル化により、製造業者はより効率的かつ生産的な方法で最も複雑なエンジニアリング問題に取り組むことができます。また、産業企業はワークフローを自動化し、ソフトウェアによってサービスを変革することで、オペレーショナル効率を向上させ、ソフトウェア定義化に近づくことができます。 HxGN LIVE Globalイベントでは、HexagonとNVIDIAが統合提供を通じてデジタル化の旅を加速する方法を紹介しました。下のデモを見て、設計者、エンジニア、その他の人々がOmniverseプラットフォームを使用して、HexagonのHxDRおよびNexusプラットフォームから超複雑なデータを迅速に集約およびシミュレーションする方法をご覧ください。 Hexagonは、OmniverseをベースにしたAI対応のWebアプリケーションを開発しており、デジタルツインと物理世界のリアルタイム比較ができるようになります。これにより、意思決定を加速し、計画とオペレーションを最適化することができます。このソリューションにより、エンタープライズは、チーム全体で迅速な反復を実現し、より協力的なワークフローを実現することができます。 この発表により、Omniverseエコシステムは、Hexagonのジオスペーシャルリアリティキャプチャ、センサー、ソフトウェア、自律技術の専門知識を活用することができ、企業はこれまで以上に迅速かつ正確に仮想世界を構築、シミュレーション、運用、最適化することができます。 NVIDIA Omniverseについて詳しくはこちらをご覧ください。Hexagonの最新発表を読んで、HxGN LIVE Global 2023での最新のデモや展示を見てください。
Rendered.aiは、合成データの生成にNVIDIA Omniverseを統合します
Rendered.aiは、プラットフォームとして提供される合成データ生成(SDG)により、開発者、データサイエンティスト、その他の人々のAIトレーニングを簡素化しています。 コンピュータビジョンAIモデルのトレーニングには、膨大で高品質で多様で偏りのないデータセットが必要です。これらを入手することは困難でコストがかかるため、AIの需要と供給の双方が増大する中で特に課題になります。 Rendered.aiのプラットフォームは、3Dシミュレーションから作成された物理的に正確な合成データを生成することにより、コンピュータビジョンモデルのトレーニングに役立ちます。 「実世界のデータは、AIモデルを一般化するために必要なすべてのシナリオとエッジケースをキャプチャできないことがあり、それがAIおよび機械学習エンジニアにとってキーとなるSDGの場所です」と、シアトルの郊外であるベルビューに拠点を置くRendered.aiの創設者兼CEOであるNathan Kundtzは述べています。 NVIDIA Inceptionプログラムの一員であるRendered.aiは、オンライントレーニング、ロボティクス、自律走行などの多くのアプリケーションにラベル付き合成データを生成することができるOmniverse Replicatorをプラットフォームに統合しました。 Omniverse Replicatorは、Universal Scene Description(「OpenUSD」)、Material Definition Language(MDL)、およびPhysXを含む3Dワークフローのオープンスタンダードに基づいて構築され、仮想世界の風景と植生のモデリング、衛星画像のオブジェクト検出、さらには人間の卵細胞の生存可能性のテストに使用されています。 Omniverse Replicatorを使用して生成された合成画像。Rendered.ai提供。 Rendered.aiは、Omniverse ReplicatorのRTXアクセラレーション機能を活用することで、レイトレーシング、ドメインランダム化、マルチセンサーシミュレーションなどの機能を利用することができます。コンピュータビジョンエンジニア、データサイエンティスト、およびその他のユーザーは、クラウド上の簡単なウェブインターフェイスを介して合成データを迅速かつ簡単に生成することができます。 「AIをトレーニングするために持つ必要があるデータは、実際にAIのパフォーマンスを支配する要因です」とKundtzは述べています。「Omniverse ReplicatorをRendered.aiに統合することで、さまざまな産業分野でより大きく、より優れたAIモデルをトレーニングするために合成データを利用するユーザーにとって、新しいレベルの簡単さと効率が実現されます。」 Rendered.aiは、カナダのバンクーバーで6月18日から22日まで開催されるコンピュータビジョンとパターン認識のカンファレンス(CVPR)で、Omniverse Replicatorとのプラットフォーム統合をデモンストレーションします。 クラウドでの合成データ生成 AWS…
Glassdoorの解読:情報に基づく意思決定のためのNLP駆動Insights
はじめに 現代の厳しい就職市場において、個人は情報を収集して適切なキャリアの決定をする必要があります。Glassdoor は、従業員が匿名で自分たちの経験を共有する人気のプラットフォームです。しかし、口コミの豊富さは求職者を圧倒することがあります。この問題に対処するため、Glassdoor のレビューを洞察に富んだ要約に自動的に縮小する NLP 駆動のシステムを構築しようと試みます。このプロジェクトでは、レビュー収集のために Selenium を使用してから要約化のために NLTK を活用するまで、ステップバイステップのプロセスを探求します。これらの簡潔な要約は、企業文化や成長機会に関する貴重な洞察を提供し、キャリアの目標を適切な組織に調整するのに役立ちます。また、解釈の違いやデータ収集のエラーなどの限界についても議論し、要約化プロセスを包括的に理解できるようにしています。 学習目標 このプロジェクトの学習目標は、多量の Glassdoor レビューを簡潔かつ情報豊富な要約に効果的に縮小する堅牢なテキスト要約システムを開発することです。このプロジェクトに取り組むことで、次のことができます。 公開プラットフォーム(この場合は Glassdoor)からレビューを要約する方法と、求職者が求職を受け入れる前に組織を評価するのにどのように役立つかを理解し、自動要約技術が必要であるという課題に気づく。 Python の Selenium ライブラリを活用して Glassdoor からデータを抽出するためのウェブスクレイピングの基礎を学び、ウェブページのナビゲーション、要素の操作、テキストデータの取得などを探求する。 Glassdoor のレビューから抽出されたテキストデータをクリーニングして準備するスキルを開発する。ノイズの処理、関係のない情報の削除、入力データの品質を確保して効果的な要約を実現する方法を実装する。…
データ体験の再発明:生成的AIと現代的なデータアーキテクチャを使用して、洞察を解き放つ
現代的なデータアーキテクチャを実装することで、異なるソースからのデータを統合するためのスケーラブルな方法が提供されますインフラストラクチャではなくビジネスドメインによってデータを組織化することにより、各ドメインは自分たちのニーズに合ったツールを選択することができます絶え間ない革新を続けながら、ジェネレーティブAIソリューションによって現代的なデータアーキテクチャの価値を最大化することができます自然言語の機能は、[…]
Amazon TranslateのActive Custom Translationを使用して、マルチリンガル自動翻訳パイプラインを構築します
Deep Learning(D2L.ai)に飛び込むは、深層学習を誰にでもアクセス可能にするオープンソースのテキストブックですPyTorch、JAX、TensorFlow、MXNetで自己完結型のコードを含む対話型Jupyterノートブック、実世界の例、解説図、数学などが特徴ですこれまでに、D2Lは世界中の400以上の大学で採用されています、例えば[...]
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.