Learn more about Search Results 比較 - Page 257
- You may be interested
- 「AI規制、キャピトルヒルで初歩的な進展...
- ゼロショットCLIPのパフォーマンスを向上...
- CMUとプリンストンの研究者がマンバを発表...
- 「大規模なモデルの時代のプログラマー」
- 「GeoJSONからネットワークグラフへ:Pyth...
- 科学者たちは、AIと迅速な応答EEGを用いて...
- 「企業がデータにアプローチする方法を変...
- 「AIは医療現場でどのような役割を果たす...
- メタファーAPI:LLM向けに構築された革命...
- 「ケーススタディ:ChatGPT Plusのコード...
- このAI論文は、概念関連伝播(CRP)を用い...
- 「フレームワークによりロボットは連続し...
- 「フィーチャー/トレーニング/推論パイプ...
- 「LangChainとOpenAIを使用して文書の理解...
- 人工汎用知能(AGI)の包括的な紹介
医薬品探索の革新:機械学習モデルによる可能性のある老化防止化合物の特定と、将来の複雑な疾患治療のための道筋を開拓する
老化やがん、2型糖尿病、骨関節炎、ウイルス感染などの他の病気は、細胞老化をストレス反応として含んでいます。老化細胞のターゲット化された除去は人気を博していますが、その分子標的がよりよく理解される必要があるため、senolyticsはほとんど知られていません。ここでは、科学者たちは、以前に発表されたデータのみで教育された比較的安価な機械学習アルゴリズムを使用して、3つのsenolyticを発見することを説明しています。さまざまなタイプの細胞老化を経験する人間の細胞株で、彼らは複数の化学ライブラリの計算スクリーニングを使用して、ginkgetin、periplocin、およびoleandrinのsenolytic作用を確認しました。これらの化学物質は、よく確立された分析法と同様に効果的であり、oleandrinは、そのターゲットに対して現在のゴールドスタンダードよりも効果的であることを示しています。この方法により、数百倍の薬剤スクリーニング費用が削減され、AIが限られた種類の薬剤スクリーニングデータを最大限に活用できることが示されています。これにより、薬剤探索の初期段階において、新しいデータ駆動型の方法が可能になりました。 senolyticsは、マウスの多くの疾患の症状を緩和することが示されていますが、その除去は、傷口治癒や肝臓機能などのプロセスの障害を引き起こすことも関連しています。有望な発見があるにもかかわらず、senolytic作用を持つ2つの薬剤しか臨床研究で有効性が示されていません。 過去には優れた分析法が開発されていますが、一般的に健康な細胞に有害です。現在、スコットランドのエディンバラ大学の研究者たちは、健康な細胞を傷つけることなく、これらの不良細胞を除去できる化学化合物を特定する革新的なアプローチを開発しました。 彼らは、senolyticの特性を持つ化合物を特定するための機械学習モデルを構築し、それを教育する方法を開発しました。広範囲に承認された薬剤または臨床段階の薬剤を含む2つの既存の化学ライブラリからの化学物質は、学習モデルのトレーニングに使用された各種のソースからのデータと結合されました(アカデミック論文や商業特許など)。機械学習システムにバイアスをかけないために、データセットにはsenolyticおよび非senolytic特性を持つ2,523の物質が含まれています。4,000以上の化合物のデータベースにアルゴリズムを適用した後、21の有望な候補が見つかりました。 テスト中に、ginkgetin、periplocin、およびoleandrinの3つの化合物は、健康な細胞に影響を与えずに老化細胞を除去することが示され、良好な候補物質となりました。結果は、oleandrinが3つの中で最も効果的であることを示しました。これらの3つは、ハーブ療法の一般的な成分です。 oleandrinの源はオウバイ(Nerium oleander)で、心不全や特定の不整脈(不整脈)の治療に使用される心臓薬digoxinと同等の効果を持つ物質です。oleandrinには抗がん、抗炎症、抗HIV、抗菌、抗酸化作用が観察されています。人間におけるoleandrinの治療的窓は狭く、治療用量を超えると高度に毒性があるため、食品添加物や医薬品としての販売や使用は違法です。 Linkedinもoleandrinと同様に、がん、炎症、微生物、神経系に対して有益な効果があり、抗酸化作用や神経保護特性があります。銀杏(Ginkgo biloba)は最も古い生きている樹種であり、その葉と種子は中国で数千年間、漢方薬として使用されています。この木はLinkedinの源です。この木の乾燥した葉を使用して処方箋なしで販売される銀杏エキスが作られています。これは、米国やヨーロッパでトップセラーのハーブサプリメントです。 研究者らは、彼らの結果が、以前の研究で特定されたsenolyticよりも同等またはそれ以上に効果的であることを示していると主張しています。彼らの機械学習ベースのアプローチは、製薬業界での通常のAIの使用とは異なるいくつかの新しい機能を備えています。 第1に、モデルトレーニングに公開されたデータのみを使用するため、内部でのトレーニング化合物の実験的な特性の追加費用は必要ありません。 第2に、senolysisは稀な分子特性であり、文献に報告されているsenolyticは少ないため、機械学習モデルは、通常はこの分野で考慮されるよりもはるかに小さなデータセットでトレーニングされました。この方法の効果は、文献データが通常予想されるよりも多様で限定的であるにもかかわらず、機械学習が文献データを最大限に活用できることを示しています。 第3に、標的非依存モデルトレーニングで薬理学的活性の表現型指標が使用されました。多くの状態は、重要な経済的および社会的負担を負っていますが、それらの状態のためには、少数またはまったくターゲットが知られていないため、表現型薬剤探索は、発見パイプラインを通じて進展する可能性のある化学の出発点の数を拡大する機会を提供します。
プロンプトの旅:プロンプトエンジニアリングを通じた生成型AIシステムのライフサイクル
プロンプトエンジニアリングは、AIの応答を指導しますそのライフサイクルは倫理的な考慮事項を統合し、公正かつ透明なAIの未来に向けて多様な入力に進化しています
マルチヘッドアテンションを使用した注意機構の理解
はじめに Transformerモデルについて詳しく学ぶ良い方法は、アテンションメカニズムについて学ぶことです。特に他のタイプのアテンションメカニズムを学ぶ前に、マルチヘッドアテンションについて学ぶことは良い選択です。なぜなら、この概念は少し理解しやすい傾向があるためです。 アテンションメカニズムは、通常の深層学習モデルに追加できるニューラルネットワークレイヤーと見なすことができます。これにより、重要な部分に割り当てられた重みを使用して、入力の特定の部分に焦点を当てるモデルを作成することができます。ここでは、マルチヘッドアテンションメカニズムを使用して、アテンションメカニズムについて詳しく見ていきます。 学習目標 アテンションメカニズムの概念 マルチヘッドアテンションについて Transformerのマルチヘッドアテンションのアーキテクチャ 他のタイプのアテンションメカニズムの概要 この記事は、データサイエンスブログマラソンの一環として公開されました。 アテンションメカニズムの理解 まず、この概念を人間の心理学から見てみましょう。心理学では、注意は他の刺激の影響を除外して、イベントに意識を集中することです。つまり、他の注意を引くものがある場合でも、私たちは選択したものに焦点を合わせます。注意は全体の一部に集中します。 これがTransformerで使用される概念です。彼らは入力のターゲット部分に焦点を当て、残りの部分を無視することができます。これにより、非常に効果的な方法で動作することができます。 マルチヘッドアテンションとは? マルチヘッドアテンションは、Transformerにおいて中心的なメカニズムであり、ResNet50アーキテクチャにおけるskip-joiningに相当します。場合によっては、アテンドするべきシーケンスの複数の他の点があります。全体の平均を見つける方法では、重みを分散させて多様な値を重みとして与えることができません。これにより、複数のアテンションメカニズムを個別に作成するアイデアが生まれ、複数のアテンションメカニズムが生じます。実装では、1つの機能に複数の異なるクエリキー値トリプレットが表示されます。 出典:Pngwing.com 計算は、アテンションモジュールが何度も反復し、アテンションヘッドとして知られる並列レイヤーに組織化される方法で実行されます。各別のヘッドは、入力シーケンスと関連する出力シーケンスの要素を独立して処理します。各ヘッドからの累積スコアは、すべての入力シーケンスの詳細を組み合わせた最終的なアテンションスコアを得るために組み合わされます。 数式表現 具体的には、キーマトリックスとバリューマトリックスがある場合、値をℎサブクエリ、サブキー、サブバリューに変換し、アテンションを独立して通過させることができます。連結すると、ヘッドが得られ、最終的な重み行列でそれらを組み合わせます。 学習可能なパラメータは、アテンションに割り当てられた値であり、各パラメータはマルチヘッドアテンションレイヤーと呼ばれます。以下の図はこのプロセスを示しています。 これらの変数を簡単に見てみましょう。Xの値は、単語埋め込みの行列の連結です。 行列の説明 クエリ:シーケンスのターゲットについての洞察を提供する特徴ベクトルです。クエリは、何がアテンションを必要としているかをシーケンスに要求します。 キー:要素に含まれるものを説明する特徴ベクトルです。クエリによってアテンションが与えられ、要素のアイデンティティを提供します。 値:…
Plotlyの3Dサーフェスプロットを使用して、地質表面を視覚化する
地球科学の分野においては、地下に存在する地質層の完全な理解が不可欠です層の正確な位置と形状を知ることで、...
GPT-5から何を期待できるのか?
私たちが皆待ち望んでいた瞬間-GPT-5とその前身であるGPT-4の印象的な能力
H1Bビザはデータ分析の洞察に基づいて承認されますか?
はじめに H1Bビザプログラムは、優れた人材が世界中からアメリカに専門知識をもたらすための門戸を開きます。毎年、このプログラムを通じて数千人の才能ある専門家がアメリカに入国し、様々な産業に貢献し、革新を推進しています。外国労働認証局(OFLC)のH1Bビザデータの世界にダイブして、その数字の裏にあるストーリーを探ってみましょう。この記事では、H1Bビザデータの分析を行い、データから知見や興味深いストーリーを得ます。フィーチャーエンジニアリングを通じて、外部ソースから追加情報をデータセットに組み込みます。データラングリングを用いて、データを丁寧に整理して、より理解しやすく分析することができます。最後に、データの可視化によって、2014年から2016年の間におけるアメリカの熟練労働者に関する魅力的なトレンドや未知の知見が明らかになります。 外国労働認証局(OFLC)から提供されたH1Bビザデータを探索し、高度な外国人労働者をアメリカに引き付ける上での重要性を理解する。 データクリーニング、フィーチャーエンジニアリング、データ変換技術などの前処理プロセスについて学ぶ。 H1Bビザの申請の受理率や拒否率を調べ、それらが影響を与える可能性がある。 データの可視化技術に慣れて、効果的な発表やコミュニケーションを行うために。 注:🔗この分析の完全なコードとデータセットは、Kaggle上で公開されています。プロセスや分析の背後にあるコードを探索するには以下のリンクをご覧ください。H1B Analysis on Kaggle この記事は、Data Science Blogathonの一環として公開されました。 H1Bビザとは何ですか? H1Bビザプログラムは、様々な産業において専門的なポジションを埋めるために、優秀な外国人労働者をアメリカに引き付けるためのアメリカの移民政策の重要な要素です。スキル不足を解消し、革新を促進し、経済成長を牽引しています。 H1Bビザを取得するには、以下の重要なステップを踏まなければなりません。 ビザをスポンサーするアメリカの雇用主を見つける。 雇用主が外国人労働者のH1B申請を米国移民局(USCIS)に提出する。 年次枠に制限があり、申請数が受け入れ可能な枠を超えた場合は、抽選が行われる。 選択された場合、USCISは申請の資格とコンプライアンスを審査する。 承認された場合、外国人労働者はH1Bビザを取得し、米国のスポンサー雇用主で働くことができる。 このプロセスには、学士号または同等の資格を持つことなどの特定の要件を満たす必要があり、支配的な賃金決定や雇用主-従業員関係の文書化などの追加の考慮事項を乗り越える必要があります。コンプライアンスと徹底的な準備が、成功したH1Bビザ申請には不可欠です。 データセット 外国労働認証局(OFLC)が提供する2014年、2015年、2016年の結合データセットには、ケース番号、ケースステータス、雇用主名、雇用主都市、雇用主州、職名、SOCコード、SOC名、賃金レート、賃金単位、支配的な賃金、支配的な賃金源、年などのカラムが含まれます。…
CapPaに会ってください:DeepMindの画像キャプション戦略は、ビジョンプレトレーニングを革新し、スケーラビリティと学習性能でCLIPに匹敵しています
「Image Captioners Are Scalable Vision Learners Too」という最近の論文は、CapPaと呼ばれる興味深い手法を提示しています。CapPaは、画像キャプションを競争力のある事前学習戦略として確立することを目的としており、DeepMindの研究チームによって執筆されたこの論文は、Contrastive Language Image Pretraining(CLIP)の驚異的な性能に匹敵する可能性を持つと同時に、簡単さ、拡張性、効率性を提供することを強調しています。 研究者たちは、Capと広く普及しているCLIPアプローチを比較し、事前学習コンピュータ、モデル容量、トレーニングデータを慎重に一致させ、公平な評価を確保しました。研究者たちは、Capのビジョンバックボーンが、少数派分類、キャプション、光学式文字認識(OCR)、視覚的問い合わせ(VQA)を含むいくつかのタスクでCLIPモデルを上回ったことがわかりました。さらに、大量のラベル付きトレーニングデータを使用した分類タスクに移行する際、CapのビジョンバックボーンはCLIPと同等の性能を発揮し、マルチモーダルなダウンストリームタスクにおける潜在的な優位性を示しています。 さらに、研究者たちは、Capの性能をさらに向上させるために、CapPa事前学習手順を導入しました。この手順は、自己回帰予測(Cap)と並列予測(Pa)を組み合わせたものであり、画像理解に強いVision Transformer(ViT)をビジョンエンコーダーとして利用しました。画像キャプションを予測するために、研究者たちは、標準的なTransformerデコーダーアーキテクチャを使用し、ViTエンコードされたシーケンスをデコードプロセスに効果的に使用するために、クロスアテンションを組み込みました。 研究者たちは、訓練段階でモデルを自己回帰的にのみ訓練するのではなく、モデルがすべてのキャプショントークンを独立して同時に予測する並列予測アプローチを採用しました。これにより、デコーダーは、並列でトークン全体にアクセスできるため、予測精度を向上させるために、画像情報に強く依存できます。この戦略により、デコーダーは、画像が提供する豊富な視覚的文脈を活用することができます。 研究者たちは、画像分類、キャプション、OCR、VQAを含むさまざまなダウンストリームタスクにおけるCapPaの性能を、従来のCapおよび最先端のCLIPアプローチと比較するための研究を行いました。その結果、CapPaはほぼすべてのタスクでCapを上回り、CLIP*と同じバッチサイズで訓練された場合、CapPaは同等または優れた性能を発揮しました。さらに、CapPaは強力なゼロショット機能を備え、見知らぬタスクにも効果的な汎化が可能であり、スケーリングの可能性があります。 全体的に、この論文で提示された作業は、画像キャプションを競争力のあるビジョンバックボーンの事前学習戦略として確立することを示しています。CapPaの高品質な結果をダウンストリームタスクにおいて実現することにより、研究チームは、ビジョンエンコーダーの事前トレーニングタスクとしてのキャプションの探索を促進することを望んでいます。その簡単さ、拡張性、効率性により、CapPaは、ビジョンベースのモデルを進化させ、マルチモーダル学習の境界を押し広げるための興味深い可能性を開拓しています。
最初のLLMアプリを構築するために知っておく必要があるすべて
言語の進化は、私たち人類を今日まで非常に遠くまで導いてきましたそれによって、私たちは知識を効率的に共有し、現在私たちが知っている形で協力することができるようになりましたその結果、私たちのほとんどは...
言語学習モデルにおけるOpenAIの関数呼び出しの力:包括的なガイド
OpenAIの関数呼び出し機能を使用したデータパイプラインの変換:PostgreSQLとFastAPIを使用した電子メール送信ワークフローの実装
機械学習によるストレス検出の洞察を開示
イントロダクション ストレスとは、身体や心が要求や挑戦的な状況に対して自然に反応することです。外部の圧力や内部の思考や感情に対する身体の反応です。仕事に関するプレッシャーや財政的な困難、人間関係の問題、健康上の問題、または重要な人生の出来事など、様々な要因によってストレスが引き起こされることがあります。データサイエンスと機械学習によるストレス検知インサイトは、個人や集団のストレスレベルを予測することを目的としています。生理学的な測定、行動データ、環境要因などの様々なデータソースを分析することで、予測モデルはストレスに関連するパターンやリスク要因を特定することができます。 この予防的アプローチにより、タイムリーな介入と適切なサポートが可能になります。ストレス予測は、健康管理において早期発見と個別化介入、職場環境の最適化に役立ちます。また、公衆衛生プログラムや政策決定にも貢献します。ストレスを予測する能力により、これらのモデルは個人やコミュニティの健康増進と回復力の向上に貢献する貴重な情報を提供します。 この記事は、データサイエンスブログマラソンの一部として公開されました。 機械学習を用いたストレス検知の概要 機械学習を用いたストレス検知は、データの収集、クリーニング、前処理を含みます。特徴量エンジニアリング技術を適用して、ストレスに関連するパターンを捉えることができる意味のある情報を抽出したり、新しい特徴を作成したりすることができます。これには、統計的な測定、周波数領域解析、または時間系列解析などが含まれ、ストレスの生理学的または行動的指標を捉えることができます。関連する特徴量を抽出またはエンジニアリングすることで、パフォーマンスを向上させることができます。 研究者は、ロジスティック回帰、SVM、決定木、ランダムフォレスト、またはニューラルネットワークなどの機械学習モデルを、ストレスレベルを分類するためのラベル付きデータを使用してトレーニングします。彼らは、正解率、適合率、再現率、F1スコアなどの指標を使用してモデルのパフォーマンスを評価します。トレーニングされたモデルを実世界のアプリケーションに統合することで、リアルタイムのストレス監視が可能になります。継続的なモニタリング、更新、およびユーザーフィードバックは、精度向上に重要です。 ストレスに関連する個人情報の扱いには、倫理的な問題やプライバシーの懸念を考慮することが重要です。個人のプライバシーや権利を保護するために、適切なインフォームドコンセント、データの匿名化、セキュアなデータストレージ手順に従う必要があります。倫理的な考慮事項、プライバシー、およびデータセキュリティは、全体のプロセスにおいて重要です。機械学習に基づくストレス検知は、早期介入、個別化ストレス管理、および健康増進に役立ちます。 データの説明 「ストレス」データセットには、ストレスレベルに関する情報が含まれています。データセットの特定の構造や列を持たない場合でも、パーセンタイルのためのデータ説明の一般的な概要を提供できます。 データセットには、年齢、血圧、心拍数、またはスケールで測定されたストレスレベルなど、数量的な測定を表す数値変数が含まれる場合があります。また、性別、職業カテゴリ、または異なるカテゴリ(低、VoAGI、高)に分類されたストレスレベルなど、定性的な特徴を表すカテゴリカル変数も含まれる場合があります。 # Array import numpy as np # Dataframe import pandas as pd #Visualization…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.