Learn more about Search Results A - Page 251

「SHAPを用いた解釈可能なAI」

私たちはAIの時代に生きていますAIは私たちの周りにあり、メディアはそれが私たちが知っている世界に与え続けている影響を忘れさせませんAIの人気が高まっているため、...

マサチューセッツ大学アマースト校のコンピューターサイエンティストたちは、Pythonプログラミングを劇的に高速化するためのオープンソースのAIツール、Scaleneを開発しました

Pythonの人気は最近急上昇しており、使いやすさと豊富なライブラリがその原動力です。しかし、Pythonの効率性は常に懸念されており、Pythonのコードは他のプログラミング言語よりも遅く実行されることがよくあります。この速度の差は、マサチューセッツ大学アマースト校のコンピュータサイエンティストによって開発された革新的なソリューションであるScaleneによって解決されました。 従来のプロファイラはPythonの効率性に対処しようとしましたが、遅いコード領域を特定することはできましたが、最適化のための具体的な洞察を提供する必要がありました。そして登場したのが、マサチューセッツ大学アマースト校の研究者が開発した画期的なPythonプロファイラ、Scaleneです。従来のプロファイラとは異なり、Scaleneは非効率性を特定し、AI技術を活用してコードのパフォーマンス向上の具体的な戦略を提案します。 Scaleneのアプローチは、従来のプロファイリング手法を超えるパフォーマンスボトルネックの洗練された総合的な分析に基づいています。このツールはPythonの遅さに最も貢献している主要な要素、つまりCPUの利用、GPUとの相互作用、およびメモリ使用パターンを対象にしています。これらの重要な要素を綿密に分析することで、Scaleneは開発者に非効率性の根本原因に対する前例のない洞察を提供します。 Scaleneが真に異なる点は、最適化に対するユーザーセントリックなアプローチです。Scaleneは積極的な姿勢を取ります。従来のプロファイラは、プログラマが生データの解釈に苦慮することが多いのに対して、Scaleneに組み込まれたAI駆動のエンジンはボトルネックを検出し、具体的なコードの文脈に合わせた実用的な提案をします。この画期的な機能により、開発者はコードの個々の行の最適化や戦略的なコードグループの最適化など、改善の正確な領域に向かって導かれます。 上記の表は、さまざまなプロファイラとScaleneのパフォーマンスと機能を比較しています。 この画期的な方法論は、より効率的なPythonプログラミングを目指す旅において重要な進歩を示しています。これにより、開発者はパフォーマンスのボトルネックを正確に特定するだけでなく、最適化の複雑さを明確なロードマップでナビゲートすることができます。ScaleneのAI駆動のアプローチは、検出と解決のギャップを埋め、プログラマがPythonのパフォーマンスの課題に効果的に対処し、コードベースの品質を高めることを保証します。この革新的なプロセスは、データ駆動の洞察と実用的なガイダンスによる最適化されたPython開発の新しい時代の基盤を築きます。

Googleの研究者たちは、AIによって生成された画像を透かしを入れたり識別するためのデジタルツールである「𝗦𝘆𝗻𝘁𝗵𝗜𝗗」を紹介しました

人工知能(AI)の急速に進化する風景の中で、生成モデルは伝統的な手段でキャプチャされたものとほとんど区別のつかない、写真のようなリアルな画像を作り出しています。この技術は膨大な創造力を開放する一方で、AIによるコンテンツと実際のイメージを区別する必要性や誤情報の拡散についての懸念も呼び起こしています。課題は、これらのAIによって生成された画像を識別することであり、それらは正確な情報と誤った情報の両方を広めるために使用され、現実とシミュレーションの境界を曖昧にします。 現在、AIによって生成されたコンテンツを識別することは大きな課題となっています。スタンプや透明のテキストオーバーレイのような従来の透かしの方法は、簡単に操作または削除することができます。有用なメタデータも編集中に変更または失われる可能性があります。既存の解決策には、コンテンツの操作がより洗練されている時代におけるメディアの完全性を保証するために必要な堅牢性が欠けています。 Google DeepMindとGoogle Researchが共同開発した画期的なツールであるSynthIDにご挨拶を。この革新的な技術は、画像のピクセルに直接目に見えないデジタルウォーターマークを埋め込むことにより、識別目的で検出することができます。SynthIDは、ユーザーが責任を持ってAIに生成されたコンテンツと対話し、デジタルメディアへの信頼を高めることを目指して考案されました。 SynthIDは、ウォーターマークと識別のために2つのディープラーニングモデルの力を利用しています。これらのモデルは、多様な画像のトレーニングを受けており、正確なウォーターマークの識別とオリジナル画像との微妙なウォーターマークの整列を含む複数の目標を最適化しています。この埋め込みウォーターマーキング技術は、JPEGなどの形式で一般的な色の変更、フィルタ、またはロッシー圧縮などの変更後も画像の品質を保持します。 SynthIDは、ウォーターマークの識別結果を解釈するための3つの信頼レベルを提供します。デジタルウォーターマークが検出されると、画像の一部がおそらくImagenによって生成されたものです。内部テストでは、SynthIDは一般的な画像操作に対して効果を発揮し、現実世界のシナリオでの堅牢性と信頼性を高めています。 AIによって生成されたコンテンツが現実にシームレスに溶け込む世界で、SynthIDのようなツールは信頼と責任を育むために重要な一歩を提供します。極端な操作に対する完全な解決策ではありませんが、SynthIDのウォーターマーキングと識別のアプローチは、AIによって生成された画像の識別に向けた有望な進歩です。Googleの責任あるAI開発への取り組みは、このツールが画像以外の新興のAIモデルやメディアの形態とともに進化する可能性を強調しています。

AIブームの裏にある「デジタル・スウェットショップ」で働く海外労働者の軍団

フィリピンでは、非公式な政府の推定によると、200万人以上がAIの広範な部分として「クラウドワーク」を行っています

「生成型AIのGPT-3.5からGPT-4への移行の道程」

導入 生成型人工知能(AI)領域におけるGPT-3.5からGPT-4への移行は、言語生成と理解の分野での飛躍的な進化を示しています。GPT-4は、「Generative Pre-trained Transformer 4」の略称であり、改良されたアーキテクチャとトレーニング方法を組み合わせた反復的な進歩の結晶です。 GPT-3.5はコンテキストの把握と一貫したテキストの生成において印象的な能力を示しましたが、GPT-4はさらにこの軌道を進化させます。洗練されたトレーニングデータ、より大きなモデルサイズ、高度な微調整技術を統合することで、GPT-4はより正確かつコンテキストに敏感な応答を生み出します。 この旅は、AIの能力向上への執念深い追求を示し、AIの進化の反復的な性質を強調しています。コンテンツ作成から顧客サービスまで、さまざまなセクターでのGPT-4の展開は、人間と機械の相互作用を革新する可能性を示しています。 GPT-4は、生成型AIの可能性を際立たせ、技術の迅速な進化を考察しています。この移行は、AIを深い人間のような言語理解と生成に導く洗練されたマイルストーンを示しています。 学習目標 GPT-4の豊かな言語能力を向上させるための基本的な技術的進歩を理解する。 バイアスや誤情報の影響に対処し、倫理的な複雑さに取り組む。 産業、コミュニケーション、社会へのGPT-4の広範な影響を探求する。 GPT-4との対話スタイルの発見を通じて、その創造性を明らかにする。 GPT-4が将来のAIの景色と創造性を形作る役割を想像する。 組織や産業内での倫理的なAIの統合アプローチを育てる。 この記事はデータサイエンスブログマラソンの一部として公開されました。 生成型AI言語モデルの進化を解明する 人間の成果の限界を超える革新が続く人工知能のダイナミックな領域を探求し、GPT-3.5から変革的なGPT-4へのマイルストーンを経て進化する生成型AI言語モデルの物語に没入します。この旅を技術の独創性の物語として想像し、各フェーズがAI内の人間の言語を再現するためのマイルストーンを表しているとします。GPT-3.5の背景は、言語理解の新たな時代を切り開く数値を超えた飛躍を象徴しています。タイムラインやギアの融合などの視覚的なメタファーは、この物語の共鳴を増幅させることができます。GPT-4は、AIの進歩だけでなく、人間の知性と技術の優位性を結ぶ架け橋としての象徴として浮かび上がります。GPT-3.5からGPT-4への移行は、深いシフトを示しており、私たちの旅はその意味、進歩、そしてAIの景色全体に広がる展望を探求することになります。 GPT-3.5がこの舞台に登場することで、GPT-4の到来の重要性が高まり、単なる数値の移行を超えた意義を持つようになりました。これは、言語の理解と生成が絡み合い、コミュニケーションの構造を再想像する時代を切り開く節目となる瞬間です。言語AIの進歩の行進を示すタイムラインや、言語生成の背後にある複雑な機械の組み合わせを象徴するギアの合成など、視覚的なメタファーは、この物語の共鳴を高めることができます。GPT-4は、AIの進化だけでなく、人間の知性と技術の威力を結ぶ架け橋としての象徴です。GPT-3.5からGPT-4への移行により、私たちの探求の核心となる深いシフトが生まれ、その意義、進歩、AIの景色全体に広がる展望に更に深く踏み込むことになります。 GPT-3.5のアーキテクチャ 自己注意メカニズム 自己注意メカニズムはトランスフォーマーのアーキテクチャの重要な要素です。このメカニズムにより、モデルは特定の単語に対して、シーケンス内の異なる単語の重要性を評価することができます。このメカニズムは、単語間の関係と依存関係を捉え、モデルがコンテキストを理解することを可能にします。 マルチヘッドアテンション GPT-3.5では、他のトランスフォーマーモデルと同様に、自己注意は複数の「ヘッド」またはサブアテンションメカニズムで使用されています。各ヘッドは入力シーケンスの異なる側面に焦点を当て、モデルにさまざまな関係やパターンを捉える能力を提供します。…

「GoogleはDeepfakeへの対策として、AIによって生成された画像にウォーターマークを付けます」

誤解を招くコンテンツの急増に対抗する重要な一歩として、Googleは革新的なソリューションを導入し、ディープフェイクに対する新たな防御層をもたらしています。この先駆的な取り組みは、AI技術を使用して作成された画像に秘密の盾のような見えない透かしを施すものです。透かしツールである「SynthID」は、Google Research、Google Cloud、Google DeepMindの革新的な連携によって生み出されました。この動きがオンラインの視覚的な信頼性を強化し、ディープフェイクとデジタルの誤情報に対する闘いに役立つ方法を探ってみましょう。 また読む:AIの時代にディープフェイクを検出・処理する方法は? SynthID:信頼性の守護者 SynthIDという革命的なツールは、AIによって生成された作品の出自を示す見えないが消えない署名を画像に与えます。この透かしの革新は、ディープフェイクに対する強力な武器となると同時に、著作権で保護された画像を保護します。SynthIDのポテンシャルは、デジタル透かしを画像のピクセルに微妙に埋め込む能力にあります。この技術の素晴らしさは、人間の目にはほとんど見えないということですが、アルゴリズムのレンズを通じて検出可能な点にあります。 また読む:アメリカの裁判所、AIによって生成された芸術作品に著作権を認めず ステルスでありながら強靱 SynthIDは、AIによって生成された画像のダイナミックな状況に対処するために特別に設計された強力な機能を備えて戦場に参戦します。GoogleのAIアプリケーションとモデルを作成するためのプラットフォームであるVertex AI内のベータ版として動作するSynthIDは、Googleの先駆的なテキストから画像への変換モデルであるImagenを専用にサポートしています。この驚異的なツールは、SynthIDの透かしを持つ画像をスキャンすることで表面的なものを超えた機能を提供します。透かしの識別は、検出された、検出されていない、および可能性があるの3つの確実性レベルで測定されます。 また読む:EU、ディープフェイクとAIコンテンツの識別策を求める 二つのAIガーディアン SynthIDの核心には、透かしを施すためのAIモデルと識別するためのAIモデルのシナジーがあります。これら2つの強力な力は、多様な画像セットを使用して共に訓練されました。この組み合わせた能力により、SynthIDはフィルタ、色の変更、または高度な圧縮といった変更の層を貫通し、AIによって生成された画像を識別する能力を保持します。 また読む:MITのPhotoGuard、AI画像の操作に対抗するためにAIを使用 SynthIDの確実性の盾 SynthIDは確実ではありますが、慎重です。透かしを施された画像を完全に識別する絶対的な確実性を自慢するわけではありませんが、透かしを持つ可能性がある画像とそれを持ちそうな画像との間を見極める洞察力を持っています。この戦略的なアプローチにより、SynthIDは正確さと慎重な分析の間の適切なバランスを取ることができます。 また読む:OpenAIのAI検出ツール、AIによって生成されたコンテンツの74%を検出できず 対策の波 Googleの画像透かしの革新的な取り組みは、競技場での唯一の試みではありません。ImatagやSteg.AIなどの企業も、クロッピング、リサイズ、編集に強い透かし技術で参入しています。Microsoftも、暗号化透かしに対する取り組みを公約しています。ShutterstockやMidjourneyも、AIによって生成されたコンテンツを示すマーカーを埋め込む独自のアプローチを進めています。OpenAIのDALL-E 2も、その創造物の証として微妙な透かしを組み込んでいます。 また読む:OpenAI、Google、Microsoft、Anthropicの4大テック企業が安全なAIのために結束 私たちの意見 生成型AIの領域は創造的な可能性で満ちていますが、同時に誤情報や欺瞞の可能性も大きくなっています。SynthID透かしの登場は、デジタルの世界での透明性と信頼性を確保するための賞賛すべき進歩です。このAIのシナジーによって支えられる見えない安全装置は、本物のコンテンツとAIによって生成された作品とを区別することでユーザーに力を与えます。デジタルの二重性に満ちた時代において、SynthIDの導入は単なる技術の進歩にとどまらず、真実を保護し、誤情報の拡散に対抗する戦略的な操作です。

このAI研究は、深層学習システムが継続的な学習環境で使用される際の「可塑性の喪失」という問題に取り組んでいます

現代の深層学習アルゴリズムは、トレーニングが一度だけ行われるかなりのデータ収集に焦点を当てています。声の認識や画像の分類における深層学習の初期の成功例は、すべてこのような一度だけのトレーニング設定を使用していました。リプレイバッファとバッチ処理は、深層学習が強化学習に適用される場合に後から追加され、トレーニングがほぼ一度だけの設定に非常に近くなりました。GPT-3やDallEのような最新の深層学習システムのトレーニングにも大量のデータバッチが使用されました。これらの状況で最も一般的なアプローチは、データを継続的に収集し、トレーニング構成で定期的に新しいネットワークを作成することです。もちろん、多くのアプリケーションではデータ分布が時間とともに変化し、トレーニングを継続する必要があります。現代の深層学習技術は、一度だけのトレーニング設定を念頭に開発されました。 これに対して、永続的な学習問題設定は、新鮮なデータからの継続的な学習に焦点を当てています。継続的な学習オプションは、学習システムが動的なデータストリームに対処しなければならない問題に最適です。たとえば、家の中を動き回るロボットを考えてみてください。一度だけのトレーニング設定を使用すると、家のレイアウトが変更されるたびにロボットをゼロから再トレーニングするか、無用の危険にさらすことになります。定期的にデザインが変更される場合は、ゼロから再トレーニングする必要があります。一方、ロボットは新しい情報から簡単に学習し、継続的な学習シナリオの下で家の変化に常に適応することができます。最近、生涯学習の重要性が高まり、これに対応するためのより専門的な会議が開催されています。例えば、Life-long Learning Agents Conference(CoLLAS)です。 彼らは自分たちのエッセイで継続的な学習の環境に重点を置いています。新鮮なデータにさらされると、深層学習システムは以前に学んだもののほとんどを失ってしまう、これを「壊滅的な忘却」と呼ぶ状態です。言い換えれば、深層学習の技術は継続的な学習の問題では安定性を維持しません。1900年代後半に、初期のニューラルネットワークがこのような振る舞いを最初に示しました。「壊滅的な忘却」による安定性の保持についての深層継続学習に関しては、最近多くの記事が書かれています。 新しい仕事が提供されると、ネットワークの設定には新しい出力、つまりヘッドが追加され、タスクが増えるにつれて出力の数も増えていきます。そのため、古いヘッドからの干渉の効果がプラスチシティの喪失の結果と混同されることがあります。Chaudhryらによると、新しいタスクの開始時に古いヘッドが取り除かれた場合、プラスチシティの喪失はわずかであり、彼らが見たプラスチシティの喪失の主な原因は古いヘッドからの干渉であることを示唆しています。以前の研究者が10の課題しか使用しなかったため、深層学習技術が長い課題リストに直面した場合のプラスチシティの喪失を測定することはできませんでした。 これらの論文の結果は、深層学習システムが重要な適応性の一部を失っていることを示唆していますが、誰もが継続的な学習がプラスチシティを失っているとまだ示していません。最近の作品でプラスチシティの喪失が著しいと示されている強化学習の分野では、現代の深層学習におけるプラスチシティの喪失の証拠がより多く存在します。Nishikinらは、強化学習の問題における初期学習が後の学習に否定的な影響を与えることを示し、「プライマシーバイアス」という用語を提唱しました。 方針の変更による結果として、強化学習は基本的に連続的であり、この結果は学習が継続する場合に深層学習ネットワークが柔軟性を失っている可能性があります。また、Lyleらは、一部の深層強化学習エージェントが新しいスキルを獲得する能力を最終的に失う可能性があることを示しました。これらは重要なデータポイントですが、現代の深層強化学習の複雑さのため、明確な結論を出すことは容易ではありません。これらの研究は、心理学の文献や機械学習、強化学習の最新の研究を含めています。本研究では、アルバータ大学コンピュータ科学部およびCIFAR AIチェア、アルバータマシンインテリジェンス研究所の研究者が現代の深層学習におけるプラスチシティの喪失についてより結論的な回答を提供します。 彼らは、持続的な教師あり学習の問題が深層学習のアプローチに柔軟性を失わせ、この柔軟性の喪失が深刻であることを示しています。ImageNetデータセットを使用した連続的な教師あり学習の問題を数百回の学習試行を含めて行い、深層学習が柔軟性の喪失に悩んでいることを最初に示します。強化学習において常に発生する複雑性と関連する混乱は、代わりに教師あり学習のタスクを使用することで排除されます。何百ものタスクを持っているおかげで、柔軟性の喪失の完全な量も把握することができます。彼らは次に、MNISTの変形とゆっくり変化する回帰問題という2つの計算コストの低い問題を使用して、深層学習の柔軟性の欠如の普遍性を証明します。さらに、深層学習の柔軟性の喪失の重大性と一般性を示した後、その起源をより深く理解したいとしています。

「最先端のAI翻訳ソフトウェア/ツール(2023年9月)」

ほとんどのビジネスセクター、翻訳サービスを含む、人工知能(AI)によって変革されています。私たちの地球が非常に相互接続されており、言語の驚くべき多様性を持っているため、翻訳サービスはこれまで以上に重要です。 最新の機械学習翻訳技術を日常的に使用する業界の専門家にとっても、翻訳ツールは同様に重要です。 機械翻訳は、一つの言語を別の言語に自動的に翻訳するものです。これにより、テキストを目標言語に翻訳します。AI翻訳ツールとソフトウェアの最高のものに移る前に、機械翻訳を定義することが重要です。 いくつかの翻訳サービスでは、機械翻訳と人間の支援を組み合わせて、翻訳が目的地のロケールに特化していることを保証しています。これにより、特定の慣用句、社会的な引用などを素材に使用することができます。 AI翻訳のトップツールとソフトウェアのいくつかは以下の通りです: Google 翻訳 Google 翻訳は、圧倒的に最も使用されている翻訳ツールです。長い間、ほとんどの人々によって利用されてきました。無料のオンライン機械翻訳ツールを使用して、テキスト、ドキュメント、ウェブサイトを一つの言語から別の言語に翻訳することができます。 最も使いやすいAI翻訳ツールである Google 翻訳です。シンプルなインターフェースで、言語を選択し、テキストを入力し、「翻訳」を押すだけで使用できます。プログラムは100以上の言語をサポートし、ネイティブスピーカーの入力を使用してAIシステムが訓練されました。 Rask AI Rask AIは、コンテンツクリエーターや企業が素早く効率的に130以上の言語にビデオを翻訳できるワンストップローカリゼーションツールです。 「テキストから音声へ」および「音声クローン」技術を使用することで、録音や声優の雇用なしでプロ品質のナレーションをビデオに追加することができます。そして、吹き替えの際に自分自身の声や声のトーンを保つこともできます。 マルチスピーカーの検出と翻訳は、当社が他のサービスとは異なると考えるユニークな機能です。RaskのAIチームは、この経験を提供する最初の一人であることを誇りに思っています。Rask AIでは、28以上の音声クローン言語を利用できます!2時間までのポッドキャスト、教育コンテンツの翻訳と音声オーバーの生成、または世界中の視聴者にゲームレビューを提供するために、初心者から経験豊富なクリエーターまでのためのebayです。 DeepL 企業や個人が利用するAI翻訳ツールの一つであるDeepLは、継続的に人気を集めている技術の一つです。プログラムは信頼性のある翻訳を提供することで評判があります。 DeepLは使いやすいデザインとスムーズなPCおよびiOSの接続性で知られています。ツールを使用して翻訳を変更し、自動翻訳に対して細かい制御を行うことができます。DeepLは、ソースドキュメントの書式を保持するという素晴らしい特徴も持っています。 Alexa Translations…

Googleとジョージア工科大学の研究者が、セグメンテーションマスクを作成するための直感的な後処理AIメソッドであるDiffSegを紹介しました

セマンティックセグメンテーションとして知られるコンピュータビジョンのタスクの目的は、画像内の各ピクセルにクラスまたはオブジェクトを割り当てることです。各ピクセルが特定のタイプまたはオブジェクトに対応する、画像の密なピクセルごとのセグメンテーションマップが意図されています。画像の操作、医療画像、自動運転などを含む多くの後続プロセスが、それを前提条件として依存しています。ターゲットデータセットが与えられ、カテゴリが既知の教師ありセマンティックセグメンテーションよりも、未知のカテゴリを持つ画像のゼロショットセグメンテーションははるかに困難です。 最近の人気のある作品SAMで示されているように、1.1Bのセグメンテーション注釈を使用してニューラルネットワークをトレーニングすることで、任意の画像へのゼロショットの転送が実現されています。これは、セグメンテーションが特定のデータセットに制約されるのではなく、さまざまなタスクの構築ブロックとして使用されることを確実にするための重要なステップです。しかし、すべてのピクセルに対してラベルを収集するのはコストがかかります。そのため、注釈やターゲットの事前知識がない、最も制約の少ない状況(つまり、注釈も事前知識もない)での教師なしおよびゼロショットセグメンテーションの技術を探求することは、研究と製品開発において非常に興味深いものです。 GoogleとGeorgia Techの研究者は、安定した拡散(SD)モデルの力を利用して、ユニバーサルセグメンテーションモデルを構築することを提案しています。最近の安定した拡散モデルは、最適なプロンプトを使用して高解像度の画像を生成しています。拡散モデルでは、オブジェクトクラスタに関するデータが存在すると仮定することが妥当です。 拡散モデルの自己注意層は、注意テンソルを生成するため、チームはセグメンテーションマスクを作成するための直感的で効果的な事後処理手法であるDiffSegを導入しました。アルゴリズムの主要な3つの部分は、注意の集計、反復的な基準による注意のマージ、および非最大抑制です。DiffSegは、グリッド上のアンカーポイントをサンプリングして、複数の解像度にわたって視覚情報を保持するように、4Dの注意テンソルを空間的に一貫した方法で集約するための反復的なマージング技術を使用します。サンプリングされたアンカーは、類似したオブジェクトをマージするための注意マスクの出発点として機能します。KLダイバージェンスは、2つの注意マップ間の類似度の度合いを決定し、マージプロセスを制御します。 DiffSegは、一般的なクラスタリングベースの教師なしセグメンテーションアルゴリズムに対する人気のある代替手法です。DiffSegは決定論的であり、クラスタの数の入力を必要としません。DiffSegは、事前知識や専門機器(SAMと同様)を必要とせずに、画像を入力として高品質のセグメンテーションを生成することができます。 以前の試みよりも少ない補助データを使用して、DiffSegは両方のデータセットでより良い結果を達成しています。研究者は、DiffSegを2つの広く使用されているデータセット、教師なしセグメンテーション用のCOCO-Stuff-27と、専用の自動運転データセットであるCityscapesで評価しています。提案された手法は、COCO-Stuff-27のピクセル精度で26%、平均IoUで17%改善し、以前の教師なしゼロショットのSOTA手法と比較しています。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us