Learn more about Search Results Yi - Page 22

人工知能(AI)エージェント進化のフロンティア

AIエージェントアーキテクチャの微妙な行動をナビゲートすることにより、従来のソフトウェアアプリケーションとは異なる自己進化エンティティが浮かび上がってきます。従来のソフトウェアは予め定められた機能に拘束され続けますが、GPT-4などの大規模言語モデル(LLM)に基づくAIエージェントは、自律的な意思決定、適応的な学習、統合システム運用において動的な能力を示します。ただし、当社の詳細な分析によれば、AIエージェントエコシステムはまだ初期段階にあり、倫理的考慮事項や総合的なコンポーネントの統合において顕著な課題が存在しています。GitHubなどのプラットフォームにカタログ化されている主要エージェントは、この変革期の先頭を切っていますが、彼らも業界全体の課題と機会を強調しています。本記事では、AIエージェントの構成の微妙な側面に深く踏み込み、従来のソフトウェアの設計図との対比を行い、現在のAIエージェントの開発的な景色を包括的に紹介します。これからのテクノロジーの未来を見据えるビジョナリーにとって必読の一文です。 AIエージェントの主要なコンポーネント 自律的なAIエージェントは、目標の達成のために独立して知覚、推論、学習、行動する自己統治型のエンティティであり、AIと機械学習の進歩によって可能にされています。 脳(知識核): 自然言語処理と理解のための大規模言語モデル(LLM)。パターン認識、意思決定、問題解決のための高度な機械学習アルゴリズム。 メモリ(情報の保存): 構造化データのためのデータベース(SQLデータベースなど)。タスクのコンテキストとエージェントライフサイクル管理のためのPineconeなどのベクトルデータベースシステム。クイックアクセスと処理のためのローカルコンピュータメモリ。 感覚(入力インターフェース): テキスト解析モジュール:テキストファイルを読み取り、解釈します。 画像処理モジュール:画像を分析し、解釈します。音声処理モジュール:音声信号を理解し、生成します。ビデオ処理モジュール:ビデオコンテンツを分析します。 目標(主要な目的): エージェントの行動と意思決定を導く事前定義された主要目標。具体的な目標(例:「エネルギー消費を最適化する」)またはより一般的な目標(例:「ユーザーを効率的にサポートする」)。 自律的な運用: 自己維持アルゴリズムにより、AIは定常的な人間の介入なしに自律的に運用、学習、適応します。AIが事前に定義された範囲と倫理的なガイドライン内に留まるための自己調整メカニズム。 コミュニケーションインターフェース: 人間とAIの相互作用のための自然言語理解(NLU)および生成(NLG)モジュール。他のソフトウェアやシステムとの通信のためのAPIの統合。 倫理的および安全なプロトコル: AIが倫理的な範囲内で動作することを保証するメカニズム。AIが予測不可能なふるまいを示した場合の「キルスイッチ」や緊急停止メカニズム。 学習および適応メカニズム: フィードバックに基づいて時間の経過とともにAIが適応し改善できるようにする強化学習モジュール。知識ベースを更新するための連続的な学習アルゴリズム。 意思決定フレームワーク: データ、目標、制約に基づいてAIが意思決定を行うためのアルゴリズム。 リソース管理: 計算リソースを効率的に管理し、過剰なエネルギー消費を抑えながら最適なパフォーマンスを保証するシステム。…

フリーユーについて紹介します:追加のトレーニングや微調整なしで生成品質を向上させる新しいAIテクニック

確率的拡散モデルは、画像生成モデルの最新のカテゴリであり、特にコンピュータビジョンに関連するタスクにおいて研究の重要な焦点となっています。確率的拡散モデルは、Variational Autoencoder(VAE)、Generative Adversarial Networks(GAN)、およびベクトル量子化アプローチなど、他の画像生成モデルのクラスとは異なる新しい生成パラダイムを導入しています。これらのモデルは、潜在空間をマッピングするために固定マルコフ連鎖を使用し、データセット内の潜在的な構造的複雑さを捉える複雑なマッピングを可能にします。最近では、高い詳細レベルから生成される例の多様性までを含む印象的な生成能力により、画像合成、画像編集、画像から画像への変換、テキストからビデオへの変換など、さまざまなコンピュータビジョンの応用で突破的な進展が生まれています。 確率的拡散モデルは、拡散プロセスとノイズ除去プロセスの2つの主要なコンポーネントで構成されています。拡散プロセスでは、ガウスノイズが段階的に入力データに組み込まれ、徐々に純粋なガウスノイズに変換されます。対照的に、ノイズ除去プロセスは、学習された逆拡散操作のシーケンスを使用して、ノイズのある状態から元の入力データを復元することを目指します。通常、各ノイズ除去ステップごとにノイズの取り除きを予測するために、U-Netが使用されます。既存の研究は、主にダウンストリームの応用で事前学習された拡散U-Netの使用に焦点を当てており、拡散U-Netの内部特性の限られた探求を行っています。 S-Labと南洋理工大学の合同研究は、拡散モデルの従来の応用からの脱却を図り、拡散U-Netのノイズ除去プロセスにおける効果を調査しています。ノイズ除去プロセスのさらなる理解を得るため、研究者たちは、拡散モデルの生成プロセスを観察するためにフーリエドメインへのパラダイムシフトを導入しています。これは比較的未開拓の研究領域です。 上の図は、最上段における進行性のノイズ除去プロセスを示し、次に示される2つの行は、各ステップごとに対応する逆フーリエ変換後の低周波数および高周波数空間ドメイン情報を示しています。この図からは、低周波成分の漸進的な変調が示され、変調は緩やかな率で行われていることがわかります。一方、高周波成分は、ノイズ除去プロセス全体を通じてより顕著なダイナミクスを示しています。これらの結果は、直感的に説明することができます。低周波成分は、画像のグローバルな構造と特性を表しており、グローバルなレイアウトや滑らかな色を含んでいます。これらの成分に大きな変更を加えることは、画像の本質を根本的に変える可能性があるため、ノイズ除去プロセスでは一般的には適していません。一方、高周波成分は、エッジやテクスチャなどの画像の急速な変化を捉え、ノイズに非常に敏感です。ノイズ除去プロセスでは、これらの複雑なディテールを保持しながらノイズを除去する必要があります。 ノイズ除去時の低周波成分と高周波成分に関するこれらの観察を考慮すると、調査は拡散フレームワーク内のU-Netアーキテクチャの具体的な貢献を特定するために広がります。U-Netデコーダの各段階では、スキップコネクションとバックボーンからのスキップフィーチャーが組み合わされます。研究は、U-Netの主要なバックボーンがノイズ除去において重要な役割を果たしている一方、スキップコネクションはデコーダモジュールに高周波フィーチャーを導入し、微細なセマンティック情報の回復に役立っていることを明らかにしました。ただし、この高周波フィーチャーの伝播は、推論フェーズにおいてバックボーンの固有のノイズ除去能力を損なう可能性があり、異常な画像の詳細の生成につながることがあります(図1の最上段に示されています)。 この発見を踏まえ、研究者らは追加の計算コストの要求やトレーニング・ファインチューニングの必要性を伴わずに生成されたサンプルの品質を向上させる「FreeU」と呼ばれる新しいアプローチを提案しています。以下に、そのフレームワークの概要を報告します。 推論フェーズにおいて、U-Netアーキテクチャの主要なバックボーンとスキップ接続からの特徴の寄与のバランスを取るために、2つの専門的な変調因子が導入されます。最初の変数である「バックボーン特徴因子」は、主要なバックボーンの特徴マップを増幅させるために設計され、ノイズ除去プロセスを強化します。しかし、バックボーン特徴のスケーリング因子を含めることは、著しい改善をもたらす一方で、時折、望ましくないテクスチャのオーバースムージングを引き起こすことが観察されます。この懸念に対処するために、2つ目の因子である「スキップ特徴のスケーリング因子」が導入され、テクスチャのオーバースムージングの問題を軽減します。 FreeUフレームワークは、テキストから画像生成やテキストから動画生成などのアプリケーションを含む既存のディフュージョンモデルとシームレスに統合する柔軟性を示します。Stable Diffusion、DreamBooth、ReVersion、ModelScope、およびRerenderなどの基礎モデルを使用し、この手法の包括的な実験評価がベンチマーク比較において行われます。FreeUが推論フェーズで適用されると、これらのモデルは生成された出力の品質の noticeable な向上を示します。以下の図で示される視覚的な表現は、FreeUが生成された画像の細かいディテールと全体的なビジュアルの忠実度を著しく向上させる効果を証明しています。 これは、追加のトレーニングやファインチューニングを必要とせずに生成モデルの出力品質を向上させる新しいAIテクニックであるFreeUの概要でした。興味があり、さらに詳しく知りたい場合は、以下の引用リンクを参照してください。

会社の文書から洞察を抽出するために、ビジネスユーザーにAmazon SageMaker Canvas Generative AIを活用する力を与えましょう

企業は、機械学習(ML)の潜在能力を利用して複雑な問題を解決し、成果を向上させることを目指していますこれまでは、MLモデルの構築と展開には、MLモデルの調整や運用パイプラインの維持など、高度な技術とコーディングのスキルが必要でした2021年の導入以来、Amazon SageMaker Canvasは、ビジネスアナリストがビルド、展開を行うことができるようになりました

合成時系列データ生成としてのLLM

最近、私たちはBremboハッカソンで$10,000の大賞を獲得しました課題は、ジェネラティブAIを使用して新しい化合物を作成し、それらの予測されたパフォーマンスデータを生成することでした私たちは…

「Pythonを使用した最も近いバーを見つけるための近接解析」

「今日は、オープンソースのPythonライブラリを使用した空間データ処理について話し続けたいと思いますすでにOpen Street MapとLandsatのオープンデータを組み合わせる方法について話しましたが、」

「助成金交付における有望なプロジェクトの特定に予測分析を活用するための7つの手順」

「予測分析は、特に助成金の分野におけるデータ駆動型意思決定において、急速に不可欠な存在となりつつあります予測分析は統計学的アルゴリズムや機械学習技術を用いて、過去のデータを分析し将来の結果を予測します予測分析を助成金に適用することで、精度が向上し競争力が増します最も...」

このAIの論文は、純粋なゼロショットの設定で、タスクの適応と未知のタスクや環境への一般化に優れたCLIN(Continuous Learning Language Agent)を紹介しています

人工知能の持続的な進化により、繊細な言語ベースのエージェントが複雑なタスクを訓練や明示的なデモなしで実行できるようになりました。しかし、その卓越したゼロショット能力にも関わらず、これらのエージェントは特に異なる環境やタスクにおいて持続的にパフォーマンスを向上させることに制約がありました。この課題に取り組むため、最近の研究チームはCLIN(Continually Learning Language Agent)という画期的なアーキテクチャを提案しました。これにより、言語エージェントは頻繁なパラメータの更新や強化学習の必要なく、複数の試行でパフォーマンスを適応・改善することが可能となります。 既存の言語エージェントの状況は、主にゼロショット学習技術を通じた特定のタスクでの熟練度を達成することに焦点を当ててきました。これらの方法は、様々なコマンドの理解と実行において印象的な能力を示してきましたが、大幅な変更やトレーニングなしで新しいタスクや環境に適応することが必要となることが多々ありました。この制約に対応するため、CLINアーキテクチャは、原因の抽象化の獲得と利用を継続的に強調するダイナミックなテキストメモリシステムを導入し、エージェントが時間とともに学習しパフォーマンスを向上させることができるようになりました。 CLINのアーキテクチャは、現在のタスクと過去の経験に基づいてゴールを生成するコントローラ、これらのゴールを具体的な手順に変換するエグゼキュータ、および各試行後に定期的に更新されるメモリシステムなど、一連の相互接続されたコンポーネントを中心に設計されています。CLINのユニークなメモリ構造は、必要な関係と非貢献関係を確立することに焦点を当てており、抽象的な学習における信頼度を評価する「may」や「should」といった言語の不確実性尺度を補完しています。 CLINの最も特徴的な要素は、様々なタスクと環境に対して迅速な適応と効率的な汎化が可能であるという点です。エージェントのメモリシステムにより、以前の試行から有益な知見を抽出し、後続の試行においてそのパフォーマンスと意思決定プロセスを最適化することができます。その結果、CLINは従来の最先端の言語エージェントや強化学習モデルのパフォーマンスを上回り、持続的な学習能力を持つ言語ベースのエージェントの開発における重要なマイルストーンを達成しました。 この研究の結果は、言語ベースのエージェントの既存の制約、特に異なるタスクと環境への適応性に対処するCLINの重要な可能性を示しています。継続的な学習や改善を可能にするメモリシステムを組み込むことで、CLINは明示的なデモや広範なパラメータの更新なしに効率的な問題解決と意思決定ができる傑出した能力を示しています。 全体として、CLINの登場は言語ベースのエージェントの重要な進展であり、持続的な改善と適応性を備えたインテリジェントシステムの開発に向けた有望な展望を提供しています。革新的なアーキテクチャとダイナミックなメモリシステムにより、CLINは次世代の言語エージェントの新たな基準を設定し、様々な領域でより洗練されて適応性のある人工知能アプリケーションへの道を開拓しています。

正しい選択をすること:AIのアドバイス、決定支援、およびLLMsの約束

「AIの民主化が多様な領域でAIシステムの採用をもたらしています大規模な言語モデル(LLM)の事前学習済みなど、最近の生成モデルの流れにより、それらの採用が進んでいます…」

ミストラル7B:コンピューターでの微調整と量子化のためのレシピ

ミストラル7Bは、ミストラルAIが作成した非常に人気のある大規模言語モデル(LLM)です他の同じサイズの事前学習済みLLMを凌駕し、Llama 2 13Bなどのより大きなLLMよりも優れています...

無料のオープンパスでODSC West Virtualに参加してください.

Note Japanese translation is provided in Unicode characters. Please make sure that your device and browser are capable of displaying Japanese characters for accurate…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us