Learn more about Search Results 定義 - Page 226
- You may be interested
- 「量子もつれ測定の革命:限られたデータ...
- 『BOSSと出会ってください:新しい環境で...
- チャットGPTを使用して複雑なシステムを構...
- VoAGI ニュース、9月27日:ChatGPT プロジ...
- GoogleのプロジェクトOpen Se Curaをご紹...
- 「AI革命:主要産業における応用とユース...
- 「ハギングフェイスの研究者たちは、Disti...
- 「AIとIMOの課題を結ぶ:形式的な平面幾何...
- 「Rustでの14倍のスピードブーストには、P...
- 「エアガーディアンと出会ってください:...
- 「組み込まれた責任あるAIプラクティスを...
- Hugging FaceとAWSが協力し、AIをよりアク...
- ハギングフェイスTGIを使用した大規模言語...
- TransformersとRay Tuneを使用したハイパ...
- 「トランスフォーマーと位置埋め込み:マ...
紙からピクセルへ:デジタルファックスがビッグデータ管理を変革する方法
現代社会は、情報の管理方法において驚くべき変革を目撃していますかつては大量の紙がオフィスのスペースを埋め尽くしていた時代がありましたが、今では洗練されたデジタル形式に置き換わりましたこの変化がビッグデータの取り扱い方法を革新したことは、驚くべきことですしかし、あなたはささいなファックス機がどのようにして革新をもたらしたのか、考えたことがありますか?... ペーパーからピクセルへ:デジタルファックスがビッグデータの管理方法を変える方法について詳しく読む
AIの変革の道:OpenAIのGPT-4を通してのオデッセイ
ソフトウェア開発者は、OpenAIのGPT-4を使用して複数のアプリケーションを生成し、時間の節約、コストの削減、パーソナライズの向上により、アプリ開発を革新します
Snowflakeにおけるクエリ性能の向上と関連コストの改善
スノーフレークのブログシリーズの4つ目の記事では、クエリのパフォーマンスを向上させるためのさまざまな最適化技術について見ていきましょう
Python におけるカテゴリカル変数の扱い方ガイド
データサイエンスまたは機械学習プロジェクトでのカテゴリ変数の扱いは容易な仕事ではありませんこの種の作業には、アプリケーションの分野の深い知識と幅広い理解が必要です...
プレイヤーの離脱を予測する方法、ChatGPTの助けを借りる
ゲームの世界では、企業はプレイヤーを引きつけるだけでなく、特にゲーム内のマイクロトランザクションに頼る無料のゲームでは、できるだけ長く彼らを保持することを目指していますこれらの...
Amazon SageMaker 上で MPT-7B を微調整する
毎週新しい大規模言語モデル(LLM)が発表され、それぞれが前任者を打ち負かして評価のトップを狙っています最新のモデルの1つはMPT-7Bです
非教師あり学習シリーズ:階層クラスタリングの探索
前回の「教師なし学習シリーズ」の投稿では、最も有名なクラスタリング手法の1つであるK平均法クラスタリングについて探究しました今回の投稿では、別の手法の背後にある方法について説明します...
チャートの推論に基づくモデルの基盤
グーグルリサーチのリサーチソフトウェアエンジニア、ジュリアン・アイゼンシュロスによる投稿 ビジュアル言語は、情報を伝えるためにテキスト以外の絵文字を使用するコミュニケーション形式です。アイコノグラフィ、情報グラフィック、表、プロット、チャートなどの形でデジタルライフで普及しており、道路標識、コミックブック、食品ラベルなどの現実世界にも広がっています。このようなメディアをコンピュータがより理解できるようにすることは、科学的コミュニケーションと発見、アクセシビリティ、データの透過性に役立ちます。 ImageNetの登場以来、学習ベースのソリューションを使用してコンピュータビジョンモデルは大きな進歩を遂げてきましたが、焦点は自然画像にあり、分類、ビジュアルクエスチョンアンサリング(VQA)、キャプション、検出、セグメンテーションなどのさまざまなタスクが定義され、研究され、いくつかの場合には人間の性能に達成されています。しかし、ビジュアル言語は同じレベルの注目を集めていません。これは、この分野における大規模なトレーニングセットの不足のためかもしれません。しかし、PlotQA、InfographicsVQA、ChartQAなどの視覚言語イメージにおける質問応答システムの評価を目的とした新しい学術データセットが、ここ数年で作成されています。 ChartQAからの例。質問に答えるには、情報を読み取り、合計と差を計算する必要があります。 これらのタスクに対して構築された既存のモデルは、光学的文字認識(OCR)情報とその座標を大規模なパイプラインに統合することに頼っていましたが、プロセスはエラーが発生しやすく、遅く、一般化が悪いです。既存の畳み込みニューラルネットワーク(CNN)またはトランスフォーマーに基づくエンドツーエンドのコンピュータビジョンモデルは、自然画像で事前にトレーニングされたモデルを簡単にビジュアル言語に適応させることができなかったため、これらの方法が広く使用されていました。しかし、既存のモデルは、棒グラフの相対高さや円グラフのスライスの角度を読み取り、軸のスケールを理解し、色、サイズ、テクスチャでピクトグラムを伝説値に正しくマッピングし、抽出された数字で数値演算を実行するなど、チャートの質問に対する課題には準備ができていません。 これらの課題に対応するために、「MatCha:数学推論とチャートディレンダリングを活用したビジュアル言語の事前トレーニングの強化」という提案を行います。 MatChaは数学とチャートを表す言葉であり、2つの補完的なタスクでトレーニングされたピクセルからテキストへの基礎モデル(複数のアプリケーションでファインチューニングできる組み込み帰納バイアスを備えた事前トレーニングモデル)です。1つはチャートディレンダリングであり、プロットまたはチャートが与えられた場合、画像からテキストモデルはその基礎となるデータテーブルまたはレンダリングに使用されるコードを生成する必要があります。数学推論の事前トレーニングでは、テキストベースの数値推論データセットを選択し、入力を画像にレンダリングし、画像からテキストモデルが回答をデコードする必要があります。また、「DePlot:プロットからテーブルへの翻訳によるワンショットビジュアル言語推論」という、テーブルへの翻訳を介したチャートのワンショット推論にMatChaの上に構築されたモデルを提案します。これらの方法により、ChartQAの以前の最高記録を20%以上超え、パラメータが1000倍多い最高の要約システムに達成します。両方の論文はACL2023で発表されます。 チャートディレンダリング プロットやチャートは、基礎となるデータテーブルとコードによって通常生成されます。コードは、図の全体的なレイアウト(タイプ、方向、色/形状スキームなど)を定義し、基礎となるデータテーブルは実際の数字とそのグループ化を確立します。データとコードの両方がコンパイラ/レンダリングエンジンに送信され、最終的な画像が作成されます。チャートを理解するには、イメージ内の視覚パターンを発見し、効果的に解析してグループ化し、主要な情報を抽出する必要があります。プロットレンダリングプロセスを逆転するには、すべてのこのような機能が必要であり、したがって理想的な事前トレーニングタスクとして機能することができます。 ランダムなプロットオプションを使用して、Airbus A380 Wikipediaページの表から作成されたチャートです。MatChaの事前トレーニングタスクは、イメージからソーステーブルまたはソースコードを回復することです。 チャート、その基礎となるデータテーブル、およびそのレンダリングコードを同時に取得することは、実践的には困難です。事前トレーニングデータを十分に収集するために、[chart、code]および[chart、table]のペアを独立して蓄積します。[chart、code]の場合、適切なライセンスを持つすべてのGitHub IPythonノートブックをクロールし、図を含むブロックを抽出します。図とそれに直前にあるコードブロックは、[chart、code]ペアとして保存されます。[chart、table]のペアについては、2つのソースを調査しました。最初のソースは、合成データで、TaPasコードベースからWebクロールされたWikipediaテーブルを手動でコードに変換します。列のタイプに応じて、いくつかのプロットオプションをサンプリングして組み合わせます。さらに、事前トレーニングコーパスを多様化するために、PlotQAで生成された[chart、table]ペアも追加します。2番目のソースはWebクロールされた[chart、table]ペアです。Statista、Pew、Our World in Data、OECDの4つのWebサイトから合計約20,000ペアを含むChartQAトレーニングセットでクロールされた[chart、table]ペアを直接使用します。 数学的推論 MatChaに数値推論知識を組み込むために、テキスト数学データセットから数学的推論スキルを学習します。事前トレーニングには、MATHとDROPの2つの既存のテキスト数学推論データセットを使用します。MATHは合成的に作成され、各モジュール(タイプ)の質問ごとに200万のトレーニング例を含んでいます。DROPは読解型のQAデータセットで、入力はパラグラフのコンテキストと質問です。 DROPでの質問を解決するには、モデルがパラグラフを読み、関連する数字を抽出し、数値計算を実行する必要があります。私たちは、両方のデータセットが補完的であることを発見しました。MATHには、異なるカテゴリーにわたる多数の質問が含まれており、モデルに明示的に注入する必要がある数学的操作を特定するのに役立ちます。DROPの読解形式は、モデルが情報抽出と推論を同時に実行する典型的なQA形式に似ています。実際には、両方のデータセットの入力を画像にレンダリングします。モデルは答えをデコードするように訓練されます。 MATHとDROPからの例をMatChaの事前トレーニング目的に取り込むことにより、MatChaの数学的推論スキルを向上させます。入力テキストを画像としてレンダリングします。 エンドツーエンドの結果 Webサイト理解に特化した画像からテキストへの変換トランスフォーマーであるPix2Structモデルバックボーンを使用し、上記の2つのタスクで事前トレーニングを行います。MatChaの強みを示すために、表の基礎にアクセスできない質問応答や要約のためのチャートやプロットを含むいくつかの視覚言語タスクで微調整します。MatChaは、以前のモデルの性能を大幅に上回り、基礎となるテーブルにアクセスできると仮定する以前の最先端も上回ります。 以下の図では、チャートと作業するための標準的なアプローチであったOCRパイプラインから情報を取り込んだ2つのベースラインモデルを最初に評価します。最初のものはT5に基づき、2番目のものはVisionTaPasに基づきます。また、PaLI-17BとPix2Structのモデル結果を報告します。PaLI-17Bは、多様なタスクでトレーニングされた大型(他のモデルの約1000倍)のイメージプラステキスト・トゥ・テキスト・トランスフォーマーですが、テキストやその他の視覚言語の読み取り能力に限界があります。最後に、Pix2StructとMatChaのモデル結果を報告します。…
ソフトウェア開発活動のための大規模シーケンスモデル
Google の研究科学者である Petros Maniatis と Daniel Tarlow が投稿しました。 ソフトウェアは一度に作られるわけではありません。編集、ユニットテストの実行、ビルドエラーの修正、コードレビューのアドレス、編集、リンターの合意、そしてより多くのエラーの修正など、少しずつ改善されていきます。ついには、コードリポジトリにマージするに十分な良い状態になります。ソフトウェアエンジニアリングは孤立したプロセスではなく、人間の開発者、コードレビュワー、バグ報告者、ソフトウェアアーキテクト、コンパイラ、ユニットテスト、リンター、静的解析ツールなどのツールの対話です。 今日、私たちは DIDACT(Dynamic Integrated Developer ACTivity)を説明します。これは、ソフトウェア開発の大規模な機械学習(ML)モデルをトレーニングするための方法論です。 DIDACT の新規性は、完成したコードの磨き上げられた最終状態だけでなく、ソフトウェア開発のプロセス自体をトレーニングデータのソースとして使用する点にあります。開発者が作業を行う際に見るコンテキストと、それに対するアクションを組み合わせて、モデルはソフトウェア開発のダイナミクスについて学び、開発者が時間を費やす方法により合わせることができます。私たちは、Google のソフトウェア開発の計装を活用して、開発者活動データの量と多様性を以前の作品を超えて拡大しました。結果は、プロのソフトウェア開発者にとっての有用性と、一般的なソフトウェア開発スキルを ML モデルに注入する可能性という2つの側面で非常に有望です。 DIDACT は、編集、デバッグ、修復、およびコードレビューを含む開発活動をトレーニングするマルチタスクモデルです。 私たちは DIDACT Comment…
Imagen EditorとEditBench:テキストによる画像補完の進展と評価
グーグルリサーチの研究エンジニアであるスー・ワンとセズリー・モンゴメリーによる投稿 過去数年間、テキストから画像を生成する研究は、画期的な進展(特に、Imagen、Parti、DALL-E 2など)を見ており、これらは自然に関連するトピックに浸透しています。特に、テキストによる画像編集(TGIE)は、完全にやり直すのではなく、生成された物と撮影された視覚物を編集する実践的なタスクであり、素早く自動化されたコントロール可能な編集は、視覚物を再作成するのに時間がかかるか不可能な場合に便利な解決策です(例えば、バケーション写真のオブジェクトを微調整したり、ゼロから生成されたかわいい子犬の細かいディテールを完璧にする場合)。さらに、TGIEは、基礎となるモデルのトレーニングを改良する大きな機会を表しています。マルチモーダルモデルは、適切にトレーニングするために多様なデータが必要であり、TGIE編集は高品質でスケーラブルな合成データの生成と再結合を可能にすることができ、おそらく最も重要なことに、任意の軸に沿ってトレーニングデータの分布を最適化する方法を提供できます。 CVPR 2023で発表される「Imagen Editor and EditBench: Advancing and Evaluating Text-Guided Image Inpainting」では、マスクインペインティングの課題に対する最先端の解決策であるImagen Editorを紹介します。つまり、ユーザーが、編集したい画像の領域を示すオーバーレイまたは「マスク」(通常、描画タイプのインターフェイス内で生成されるもの)と共にテキスト指示を提供する場合のことです。また、画像編集モデルの品質を評価する方法であるEditBenchも紹介します。EditBenchは、一般的に使用される粗い「この画像がこのテキストに一致するかどうか」の方法を超えて、モデルパフォーマンスのより細かい属性、オブジェクト、およびシーンについて詳細に分析します。特に、画像とテキストの整合性の信頼性に強い重点を置きつつ、画像の品質を見失わないでください。 Imagen Editorは、指定された領域にローカライズされた編集を行います。モデルはユーザーの意図を意味を持って取り入れ、写真のようなリアルな編集を実行します。 Imagen Editor Imagen Editorは、Imagenでファインチューニングされた拡散ベースのモデルで、編集を行うために改良された言語入力の表現、細かい制御、および高品質な出力を目的としています。Imagen Editorは、ユーザーから3つの入力を受け取ります。1)編集する画像、2)編集領域を指定するバイナリマスク、および3)テキストのプロンプトです。これら3つの入力は、出力サンプルを誘導します。 Imagen Editorは、高品質なテキストによる画像インペインティングを行うための3つの核心技術に依存しています。まず、ランダムなボックスとストロークマスクを適用する従来のインペインティングモデル(例:Palette、Context…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.