Learn more about Search Results 定義 - Page 223
- You may be interested
- トップ投稿 7月31日〜8月6日:ChatGPTを忘...
- コンセプト2ボックスに出会ってください:...
- このAI研究は、パーソン再識別に適したデ...
- 「LangchainとDeep Lakeでドキュメントを...
- VoAGIニュース、8月30日:Generative AIで...
- 「信じられないほどの新しい中間補間機能...
- データ汚染とモデル崩壊:迫りくるAIの災害
- 「3つの質問:ロボットの認識とマッピング...
- 倫理と社会のニュースレター#1
- 「SDXLのためのシンプルな最適化の探究」
- LLMsによる非構造化データから構造化デー...
- 「多変量カテゴリデータを処理するためのP...
- 「NeRFたちが望むヒーローではないが、NeR...
- 「機械学習のためのソフトウェアエンジニ...
- このAI論文は、言語エージェントのための...
20以上のスタートアップに最適なAIツール(2023年)
AIによって、職場の創造性、分析、意思決定が革命化されています。現在、人工知能の能力は、企業が拡大を急ぎ、内部プロセスをより良く管理するための絶大な機会を提供しています。人工知能の応用は、自動化や予測分析からパーソナライゼーションやコンテンツ開発まで多岐にわたります。以下は、若いビジネスに有利に働く最高の人工知能ツールの概要です。 AdCreative.ai AdCreative.aiは究極の人工知能ソリューションで、広告やソーシャルメディアのゲームを強化します。創造的な作業に数時間費やす必要がなく、数秒で生成される高変換率の広告やソーシャルメディア投稿に別れを告げましょう。今すぐAdCreative.aiで成功を最大化し、努力を最小限に抑えましょう。 DALL·E 2 OpenAIのDALLE 2は、単一のテキスト入力から独自かつ創造的なビジュアルを作成する最先端のAIアートジェネレーターです。AIモデルは、画像とテキストの説明の巨大なデータセットでトレーニングされており、書かれたリクエストに応じて詳細で視覚的に魅力的な画像を生成します。スタートアップはDALLE 2を使用して広告やウェブサイト、ソーシャルメディアページの画像を作成し、手動でグラフィックを作成する必要がなく、テキストから異なる画像を生成するこの方法で時間とお金を節約することができます。 Otter AI Otter.AIは人工知能を使用して、共有可能で検索可能、アクセス可能、安全なミーティングノートのリアルタイムトランスクリプションをユーザーに提供します。音声を記録し、ノートを書き、自動的にスライドをキャプチャし、要約を生成するミーティングアシスタントを手に入れましょう。 Notion Notionは、最新のAI技術を活用してユーザー数を増やすことを目指しています。最新機能であるNotion AIは、ノートの要約、ミーティングでのアクションアイテムの識別、テキストの作成と修正などのタスクをサポートする堅牢な生成AIツールです。 Notion AIは、煩雑なタスクを自動化し、ユーザーに提案やテンプレートを提供することで、ワークフローを合理化し、ユーザーエクスペリエンスを最適化することで、最終的に簡単で改善された体験を提供します。 Motion Motionは、ミーティング、タスク、プロジェクトを考慮した日々のスケジュールを作成するためにAIを使用する賢いツールです。計画の手間を省いて、より生産的な人生に別れを告げましょう。 Jasper 先進的なAIコンテンツジェネレーターであるJasperは、その優れたコンテンツ製作機能でクリエイティブ業界で話題となっています。Jasperは、人間のライティングパターンを認識することから効率性が生まれ、グループが興味深いコンテンツを迅速に製作することができます。ランディングページや製品説明のコピーをより良く書くためにJasperをAIパワードのコンパニオンとして使用し、より魅力的で興味深いソーシャルメディア投稿を作成することができます。 Lavender リアルタイムAIメールコーチであるLavenderは、セールス業界でゲームチェンジャーとして広く認知されており、数千人のSDRs、AEs、およびマネージャーがメールのレスポンス率と生産性を向上させています。競争力のあるセールス環境では、効果的なコミュニケーションスキルが成功に不可欠です。スタートアップはLavenderを使用して、電子メールのレスポンス率を向上させ、見込み客とのより深い関係を構築することができます。 Speak AI…
現代のデータエンジニアリングにおいてMAGE:効率的なデータ処理を可能にする
イントロダクション 今日のデータ駆動型の世界では、あらゆる業界の組織が膨大なデータ、複雑なパイプライン、そして効率的なデータ処理の必要性に直面しています。Apache Airflowなどの従来のデータエンジニアリングソリューションは、これらの困難に対処するためにデータ操作をオーケストレーションし、制御することで重要な役割を果たしてきました。しかし、技術の急速な進化により、データエンジニアリングの景観を再構築するMageという新しい競合者が登場しました。 学習目標 第3者のデータをシームレスに統合および同期化すること 変換のためのPython、SQL、およびRによるリアルタイムおよびバッチパイプラインの構築 データ検証で再利用可能かつテスト可能なモジュラーコード 寝ている間に複数のパイプラインを実行、監視、およびオーケストレーションすること クラウド上で協働し、Gitとバージョン管理を行い、利用可能な共有ステージング環境を待つことなくパイプラインをテストすること Terraformテンプレートを介してAWS、GCP、およびAzureなどのクラウドプロバイダーでの高速な展開 データウェアハウスで非常に大きなデータセットを直接変換するか、Sparkとのネイティブ統合を介して変換すること 直感的なUIを介して組み込みの監視、アラート、および観測性 まるで腕木式に簡単でしょうか?それならMageを絶対に試してみるべきです! この記事では、Mageの機能と機能性について説明し、これまでに学んだことやそれを使用して構築した最初のパイプラインを強調します。 この記事はData Science Blogathonの一部として公開されました。 Mageとは何ですか? Mageは、AIによって駆動され、機械学習モデル上に構築された現代的なデータオーケストレーションツールであり、かつてないほどのデータエンジニアリングプロセスを効率化し最適化することを目的としています。これは、データ変換と統合のための効果的でありながら簡単なオープンソースデータパイプラインツールであり、Airflowのような確立されたツールに対して強力な代替手段となる可能性があります。自動化と知能の力を組み合わせることで、Mageはデータ処理ワークフローを革新し、データの取り扱いと処理の方法を変革しています。Mageは、その無比の機能と使いやすいインターフェイスにより、これまでにないデータエンジニアリングプロセスの簡素化と最適化を目指しています。 ステップ1:クイックインストール Mageは、Docker、pip、およびcondaコマンドを使用してインストールでき、またはクラウドサービス上で仮想マシンとしてホストできます。 Dockerを使用する #Dockerを使用してMageをインストールするコマンドライン >docker…
メンテナンス・プロセスの標準化におけるコンピュータ化されたメンテナンス・マネジメント・システムの役割
コンピュータ化されたメンテナンス管理システムを導入する際、複数のプラントやロケーションを持つ組織にとって、メンテナンスオペレーションやワークフロープロセスの標準化は主要な目的の一つですメンテナンスとタスク実行に構造化されたアプローチを確立することの重要性を認識することは、最初の期待以上のものですメンテナンスプロセスの標準化は、機器の信頼性を向上させ、製品やサービスの品質を高めることができますコンピュータ化されたメンテナンス管理システムの役割は、メンテナンスプロセスの標準化にあります
ビジネスにおける機械学習オペレーションの構築
私のキャリアで気づいたことは、成功したAI戦略の鍵は機械学習モデルを本番環境に展開し、それによって商業的な可能性をスケールで解放する能力にあるということですしかし…
あなたのデータが適切にモデル化されていない5つの兆候
過去10年間におけるクラウド技術と安価なストレージコストの拡大により、多くの組織が以前に考えられなかったほど大量のデータを蓄積していますペイアズユーゴー...
構造方程式モデリングにおける複数グループ分析
複数群分析(Multiple-group analysis、MGA)は、研究者が構造の指定を可能にすることにより、人口統計セグメントやサブポピュレーション間の違いを調査するための統計技術です
一度言えば十分です!単語の繰り返しはAIの向上に役立ちません
大規模言語モデル(LLM)はその能力を示し、世界中で話題になっています今や、すべての大手企業は洒落た名前を持つモデルを持っていますしかし、その裏にはすべてトランスフォーマーが動いています...
マックス・プランク研究所の研究者たちは、MIME(3D人間モーションキャプチャを取得し、その動きに一致する可能性のある3Dシーンを生成する生成AIモデル)を提案しています
人間は常に周囲と相互作用しています。空間を移動したり、物に触れたり、椅子に座ったり、ベッドで寝たりします。これらの相互作用は、シーンの設定やオブジェクトの位置を詳細に示します。マイムは、そのような関係性の理解を利用して、身体の動きだけで豊かで想像力豊かな3D環境を作り出すパフォーマーです。彼らはコンピュータに人間の動作を模倣させて適切な3Dシーンを作ることができるでしょうか?建築、ゲーム、バーチャルリアリティ、合成データの合成など、多くの分野がこの技術に恩恵を受ける可能性があります。たとえば、AMASSなどの3D人間の動きの大規模なデータセットが存在しますが、これらのデータセットには収集された3D設定の詳細がほとんど含まれていません。 AMASSを使用して、すべての動きに対して信憑性の高い3Dシーンを作成できるでしょうか?そうであれば、AMASSを使用してリアルな人間-シーンの相互作用を考慮したトレーニングデータを作成できます。彼らは、MIME(Mining Interaction and Movement to infer 3D Environments)と呼ばれる新しい技術を開発しました。これは、3D人間の動きに基づいて信憑性の高い内部3Dシーンを作成して、このような問いに対応します。それを可能にするのは何でしょうか?基本的な仮定は次のとおりです。(1)空間を移動する人間の動きは、物の欠如を示し、実質的に家具のない画像領域を定義します。また、これにより、シーンに接触する場合の3Dオブジェクトの種類や場所が制限されます。たとえば、座っている人は椅子、ソファ、ベッドなどに座っている必要があります。 図1:人間の動きから3Dシーンを推定します。3D人間の動き(左)から推定された、動きが起こったリアルな3D設定を再現します。彼らの生成モデルは、人間-シーンの相互作用を考慮した、複数のリアリスティックなシナリオ(右)を生成できます。 ドイツのマックスプランク知能システム研究所とAdobeの研究者たちは、これらの直感を具体的な形で示すために、MIMEと呼ばれるトランスフォーマーベースの自己回帰3Dシーン生成技術を作成しました。空のフロアプランと人間の動きシーケンスが与えられると、MIMEは人間と接触する家具を予測します。さらに、人間と接触しないが他のオブジェクトにフィットし、人間の動作によって引き起こされる自由空間の制約に従う信憑性の高いアイテムを予測します。彼らは、人間の動きを接触と非接触のスニペットに分割して、3Dシーン作成を人間の動きに条件付けます。POSAを使用して接触可能なポーズを推定します。非接触姿勢は、足の頂点を地面に投影して、部屋の自由空間を確立し、2Dフロアマップとして記録します。 POSAによって予測された接触頂点は、接触ポーズと関連する3D人体モデルを反映した3D境界ボックスを作成します。接触と自由空間の基準を満たすオブジェクトは、トランスフォーマーへの入力として自己回帰的に期待されます。図1を参照してください。彼らは、3D-FRONTという大規模な合成シーンデータセットを拡張して、MIMEをトレーニングするための新しいデータセットである3D-FRONT HUMANを作成しました。彼らは、RenderPeopleスキャンからの静止接触ポーズと、AMASSからのモーションシーケンスを使用して、3Dシナリオに人を自動的に追加します(一連の歩行モーションと立っている人を含む非接触人と、座って、触れて、横たわっている人を含む接触人)。 MIMEは、3Dバウンディングボックスとして表される入力動作のリアルな3Dシーンレイアウトを推論時に作成します。彼らは、この配置に基づいて3D-FUTUREコレクションから3Dモデルを選択し、人間の位置とシーンの間の幾何学的制約に基づいて3D配置を微調整します。彼らの手法は、ATISSのような純粋な3Dシーン作成システムとは異なり、人間の接触と動きをサポートする3Dセットを作成し、自由空間に説得力のあるオブジェクトを配置することができます。Pose2Roomという最近のポーズ条件付け生成モデルとは異なり、個々のオブジェクトではなく完全なシーンを予測することができます。彼らは、PROX-Dのように記録された本物のモーションシーケンスに対して調整なしで彼らの手法が機能することを示しました。 まとめると、彼らが提供したものは以下の通りです: • 人と接触するものを自動的に生成し、運動定義された空きスペースを占有しないように自己回帰的に作成する、3Dルームシーンの全く新しい運動条件付き生成モデル。 • RenderPeopleの静止接触/立ち姿勢からの3Dモーションデータを用いて、人と自由空間にいる人々が相互作用する3Dシーンデータセットが、3D FRONTを埋めるように作成されました。 コードはGitHubで入手可能であり、ビデオデモとアプローチのビデオ解説も提供されています。
量産自動運転におけるBEVパーセプション
BEVの認識技術は、ここ数年で非常に進歩しました自動運転車の周りの環境を直接認識することができますBEVの認識技術はエンド・トゥ・エンドと考えることができます
スターバックスの報酬プログラムの成功を予測する
このプロジェクトは、スターバックスの現在の顧客を効果的に引きつけ、新しい顧客を獲得するための報酬プログラムオファーを特定することに焦点を当てていますスターバックスはデータに基づく会社であり、入手するために投資を行っています...
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.