Learn more about Search Results 定義 - Page 221

NLPの就職面接をマスターする

NLPとは何か、そしてNLPに関連する仕事の面接で期待される質問のタイプは何ですか?

新たな能力が明らかに:GPT-4のような成熟したAIのみが自己改善できるのか?言語モデルの自律的成長の影響を探る

研究者たちは、AlphaGo Zeroと同様に、明確に定義されたルールで競争的なゲームに反復的に参加することによってAIエージェントが自己発展する場合、多くの大規模言語モデル(LLM)が人間の関与がほとんどない交渉ゲームでお互いを高め合う可能性があるかどうかを調査しています。この研究の結果は、遠い影響を与えるでしょう。エージェントが独立に進歩できる場合、少数の人間の注釈で強力なエージェントを構築することができるため、今日のデータに飢えたLLMトレーニングに対して対照的です。それはまた、人間の監視がほとんどない強力なエージェントを示唆しており、問題があります。この研究では、エジンバラ大学とAIアレン研究所の研究者が、顧客と売り手の2つの言語モデルを招待して購入の交渉を行うようにしています。 図1:交渉ゲームの設定。彼らは2つのLLMエージェントを招待して、値切りのゲームで売り手と買い手をプレイさせます。彼らの目標は、より高い値段で製品を販売または購入することです。彼らは第三のLLMであるAI批評家に、ラウンド後に向上させたいプレイヤーを指定してもらいます。その後、批判に基づいて交渉戦術を調整するようにプレイヤーに促します。これを数ラウンド繰り返すことで、モデルがどんどん上達するかどうかを確認します。 顧客は製品の価格を下げたいと思っていますが、売り手はより高い価格で販売するように求められています(図1)。彼らは第三の言語モデルに批評家の役割を担ってもらい、取引が成立した後にプレイヤーにコメントを提供させます。次に、批評家LLMからのAI入力を利用して、再度ゲームをプレイし、プレイヤーにアプローチを改善するように促します。彼らは交渉ゲームを選んだ理由は、明確に定義されたルールと、戦術的な交渉のための特定の数量化目標(より低い/高い契約価格)があるためです。ゲームは最初は単純に見えますが、モデルは次の能力を持っている必要があります。 交渉ゲームのテキストルールを明確に理解し、厳密に遵守すること。 批評家LLMによって提供されるテキストフィードバックに対応し、反復的に改善すること。 長期的にストラテジーとフィードバックを反映し、複数のラウンドで改善すること。 彼らの実験では、モデルget-3.5-turbo、get-4、およびClaude-v1.3のみが交渉ルールと戦略を理解し、AIの指示に適切に合致している必要があるという要件を満たしています。その結果、彼らが考慮したモデルすべてがこれらの能力を示さなかったことが示されています(図2)。初めに、彼らはボードゲームやテキストベースのロールプレイングゲームなど、より複雑なテキストゲームもテストしましたが、エージェントがルールを理解して遵守することがより困難であることが判明しました。彼らの方法はICL-AIF(AIフィードバックからのコンテキスト学習)として知られています。 図2:私たちのゲームで必要な能力に基づいて、モデルは複数の階層に分けられます(C2-交渉、C3-AIフィードバック、C4-継続的な改善)。私たちの研究は、gpt-4やclaude-v1.3などの堅牢で適切に合致したモデルだけが反復的なAI入力から利益を得て、常に発展することができることを明らかにしています。 彼らは、AI批評家のコメントと前回の対話履歴ラウンドをコンテキストに応じたデモンストレーションとして利用しています。これにより、プレイヤーの前回の実際の開発と批評家の変更アイデアが、次のラウンドの交渉のためのフューショットキューに変換されます。2つの理由から、彼らはコンテキストでの学習を使用しています:(1)強化学習を用いた大規模な言語モデルの微調整は、高額であるため、(2)コンテキストでの学習は、勾配降下に密接に関連していることが最近示されたため、モデルの微調整を行う場合には、彼らが引き出す結論がかなり一般的になることが期待されます(資源が許される場合)。 人間からのフィードバックによる強化学習(RLHF)の報酬は通常スカラーですが、ICL-AIFでは、フィードバックが自然言語で提供されます。これは、2つのアプローチの注目すべき違いです。各ラウンド後に人間の相互作用に依存する代わりに、よりスケーラブルでモデルの進歩に役立つAIのフィードバックを検討しています。 異なる責任を負うときにフィードバックを与えられた場合、モデルは異なる反応を示します。バイヤー役のモデルを改善することは、ベンダー役のモデルよりも難しい場合があります。過去の知識とオンライン反復的なAIフィードバックを利用して、get-4のような強力なエージェントが常に意味のある開発を続けることができるとしても、何かをより高く売る(またはより少ないお金で何かを購入する)ことは、全く取引が成立しないリスクがあります。彼らはまた、モデルがより簡潔であるがより綿密(そして最終的にはより成功する)交渉に従事できることを証明しています。全体的に、彼らは自分たちの仕事がAIフィードバックのゲーム環境での言語モデルの交渉を向上させる重要な一歩になると期待しています。コードはGitHubで利用可能です。

赤い猫&アテナAIは夜間視認能力を備えた知能化軍用ドローンを製造する

軍事技術のリーディングカンパニーであるRed Cat Holdings, Inc.は、Athena AIとのパートナーシップにおいて、Teal 2の人工知能(AI)およびコンピュータビジョン機能の顕著な進歩を達成しました。最新技術を活用し、Red CatとAthena AIは、特に夜間の戦場において、未曽有の意思決定支援を提供し、軍指揮官にとって革命的な発展を約束する、拡張された状況認識と戦闘力を保証するために、軍用ドローン操作を革新することを約束します。 また読む: Palantir、軍事の意思決定のための人工知能プラットフォームを発表 フェーズ2成功:夜間目標認識と戦闘追跡 Red Catは、特にTeal 2軍用ドローン向けに、Athena AIとのパートナーシップを3月に発表しました。最近完了した第2フェーズでは、Athena AIの高度な技術が、Teal 2のサーマルイメージングセンサによって録画されたビデオを夜間のテスト飛行中に成功裏に処理しました。その結果、目標認識と戦闘追跡の印象的な能力を獲得しました。人工知能の支援を受けて、指揮官は戦闘中に迅速かつよく情報を得ることができ、戦場で有利な状況を得ることができます。 また読む: Battlefield Revolution:英国、米国、オーストラリアがAIドローン試験で限界を押し広げる Teal 2の夜間コンピュータビジョン能力:ゲームチェンジャー Red Catの子会社であるTeal…

H1Bビザはデータ分析の洞察に基づいて承認されますか?

はじめに H1Bビザプログラムは、優れた人材が世界中からアメリカに専門知識をもたらすための門戸を開きます。毎年、このプログラムを通じて数千人の才能ある専門家がアメリカに入国し、様々な産業に貢献し、革新を推進しています。外国労働認証局(OFLC)のH1Bビザデータの世界にダイブして、その数字の裏にあるストーリーを探ってみましょう。この記事では、H1Bビザデータの分析を行い、データから知見や興味深いストーリーを得ます。フィーチャーエンジニアリングを通じて、外部ソースから追加情報をデータセットに組み込みます。データラングリングを用いて、データを丁寧に整理して、より理解しやすく分析することができます。最後に、データの可視化によって、2014年から2016年の間におけるアメリカの熟練労働者に関する魅力的なトレンドや未知の知見が明らかになります。 外国労働認証局(OFLC)から提供されたH1Bビザデータを探索し、高度な外国人労働者をアメリカに引き付ける上での重要性を理解する。 データクリーニング、フィーチャーエンジニアリング、データ変換技術などの前処理プロセスについて学ぶ。 H1Bビザの申請の受理率や拒否率を調べ、それらが影響を与える可能性がある。 データの可視化技術に慣れて、効果的な発表やコミュニケーションを行うために。 注:🔗この分析の完全なコードとデータセットは、Kaggle上で公開されています。プロセスや分析の背後にあるコードを探索するには以下のリンクをご覧ください。H1B Analysis on Kaggle この記事は、Data Science Blogathonの一環として公開されました。 H1Bビザとは何ですか? H1Bビザプログラムは、様々な産業において専門的なポジションを埋めるために、優秀な外国人労働者をアメリカに引き付けるためのアメリカの移民政策の重要な要素です。スキル不足を解消し、革新を促進し、経済成長を牽引しています。 H1Bビザを取得するには、以下の重要なステップを踏まなければなりません。 ビザをスポンサーするアメリカの雇用主を見つける。 雇用主が外国人労働者のH1B申請を米国移民局(USCIS)に提出する。 年次枠に制限があり、申請数が受け入れ可能な枠を超えた場合は、抽選が行われる。 選択された場合、USCISは申請の資格とコンプライアンスを審査する。 承認された場合、外国人労働者はH1Bビザを取得し、米国のスポンサー雇用主で働くことができる。 このプロセスには、学士号または同等の資格を持つことなどの特定の要件を満たす必要があり、支配的な賃金決定や雇用主-従業員関係の文書化などの追加の考慮事項を乗り越える必要があります。コンプライアンスと徹底的な準備が、成功したH1Bビザ申請には不可欠です。 データセット 外国労働認証局(OFLC)が提供する2014年、2015年、2016年の結合データセットには、ケース番号、ケースステータス、雇用主名、雇用主都市、雇用主州、職名、SOCコード、SOC名、賃金レート、賃金単位、支配的な賃金、支配的な賃金源、年などのカラムが含まれます。…

ChatGPTのデジタル商品をオンラインで販売するプロンプト

ChatGPTは、オンラインでデジタル製品を販売して収益を上げたい人にとって、ありがたい存在です

最初のLLMアプリを構築するために知っておく必要があるすべて

言語の進化は、私たち人類を今日まで非常に遠くまで導いてきましたそれによって、私たちは知識を効率的に共有し、現在私たちが知っている形で協力することができるようになりましたその結果、私たちのほとんどは...

言語学習モデルにおけるOpenAIの関数呼び出しの力:包括的なガイド

OpenAIの関数呼び出し機能を使用したデータパイプラインの変換:PostgreSQLとFastAPIを使用した電子メール送信ワークフローの実装

機械学習によるストレス検出の洞察を開示

イントロダクション ストレスとは、身体や心が要求や挑戦的な状況に対して自然に反応することです。外部の圧力や内部の思考や感情に対する身体の反応です。仕事に関するプレッシャーや財政的な困難、人間関係の問題、健康上の問題、または重要な人生の出来事など、様々な要因によってストレスが引き起こされることがあります。データサイエンスと機械学習によるストレス検知インサイトは、個人や集団のストレスレベルを予測することを目的としています。生理学的な測定、行動データ、環境要因などの様々なデータソースを分析することで、予測モデルはストレスに関連するパターンやリスク要因を特定することができます。 この予防的アプローチにより、タイムリーな介入と適切なサポートが可能になります。ストレス予測は、健康管理において早期発見と個別化介入、職場環境の最適化に役立ちます。また、公衆衛生プログラムや政策決定にも貢献します。ストレスを予測する能力により、これらのモデルは個人やコミュニティの健康増進と回復力の向上に貢献する貴重な情報を提供します。 この記事は、データサイエンスブログマラソンの一部として公開されました。 機械学習を用いたストレス検知の概要 機械学習を用いたストレス検知は、データの収集、クリーニング、前処理を含みます。特徴量エンジニアリング技術を適用して、ストレスに関連するパターンを捉えることができる意味のある情報を抽出したり、新しい特徴を作成したりすることができます。これには、統計的な測定、周波数領域解析、または時間系列解析などが含まれ、ストレスの生理学的または行動的指標を捉えることができます。関連する特徴量を抽出またはエンジニアリングすることで、パフォーマンスを向上させることができます。 研究者は、ロジスティック回帰、SVM、決定木、ランダムフォレスト、またはニューラルネットワークなどの機械学習モデルを、ストレスレベルを分類するためのラベル付きデータを使用してトレーニングします。彼らは、正解率、適合率、再現率、F1スコアなどの指標を使用してモデルのパフォーマンスを評価します。トレーニングされたモデルを実世界のアプリケーションに統合することで、リアルタイムのストレス監視が可能になります。継続的なモニタリング、更新、およびユーザーフィードバックは、精度向上に重要です。 ストレスに関連する個人情報の扱いには、倫理的な問題やプライバシーの懸念を考慮することが重要です。個人のプライバシーや権利を保護するために、適切なインフォームドコンセント、データの匿名化、セキュアなデータストレージ手順に従う必要があります。倫理的な考慮事項、プライバシー、およびデータセキュリティは、全体のプロセスにおいて重要です。機械学習に基づくストレス検知は、早期介入、個別化ストレス管理、および健康増進に役立ちます。 データの説明 「ストレス」データセットには、ストレスレベルに関する情報が含まれています。データセットの特定の構造や列を持たない場合でも、パーセンタイルのためのデータ説明の一般的な概要を提供できます。 データセットには、年齢、血圧、心拍数、またはスケールで測定されたストレスレベルなど、数量的な測定を表す数値変数が含まれる場合があります。また、性別、職業カテゴリ、または異なるカテゴリ(低、VoAGI、高)に分類されたストレスレベルなど、定性的な特徴を表すカテゴリカル変数も含まれる場合があります。 # Array import numpy as np # Dataframe import pandas as pd #Visualization…

AWS CDK を使用して Amazon SageMaker Studio ライフサイクル構成をデプロイします

Amazon SageMaker Studioは、機械学習(ML)のための最初の完全に統合された開発環境(IDE)ですStudioは、データを準備し、モデルを構築、トレーニング、展開するために必要なすべてのML開発ステップを実行できる単一のWebベースのビジュアルインターフェースを提供しますライフサイクル設定は、Studioライフサイクルイベントによってトリガーされるシェルスクリプトです [...]

Rにおける二元配置分散分析

二元分散分析(Two-way ANOVA)は、二つのカテゴリカル変数が量的連続変数に与える同時効果を評価することができる統計的方法です二元分散分析は…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us