Learn more about Search Results A - Page 21

ボードゲームをプレイするためのAIの教育

「最近では、OpenAIの新しいAIモデル、Q*に関する噂があり、特にQ学習において、AI業界の皆さんが強化学習(RL)のスキルを磨いているようです私もその一員であり、…」

『AI規制に関するEUの予備的な合意:ChatGPTへの影響』

ヨーロッパ連合は最近、広く認識されているChatGPTを含む先進的なAIモデルの規制に関する予備的な合意を仲介しました。これは世界で初めての包括的な人工知能規制の確立に向けた大きな前進です。 AIシステムの透明性 透明性の向上を図るために、ChatGPTを含む汎用AIシステムの開発者は、基本要件に従う必要があります。これには利用可能な利用ポリシーの実施、モデルトレーニング方法論の最新情報の維持、及びトレーニングに使用されたデータの詳細な要約の提供が含まれます。また、著作権法の尊重を義務付けられています。 「システミックリスク」を有するモデルに対する追加ルール 「システミックリスク」を有すると判断されたモデルは、より厳格な規制を受けます。このリスクの判断は、モデルトレーニング時に使用される計算能力の量に依存します。特に、秒間10兆回の演算を超える任意のモデルは、このカテゴリに該当します(例えばOpenAIのGPT-4)。EUの執行機関は、データセットのサイズ、登録済みビジネスユーザー、エンドユーザーなどのさまざまな基準に基づいて他のモデルを指定する権限を持ちます。 関連記事:衝撃のニュース:ChatGPTのデータ漏洩の脆弱性 高度なモデルの行動規範 ChatGPTを含む高度なモデルは、欧州委員会がより包括的かつ持続可能な制御策を策定するまで、行動規範を採用する必要があります。不遵守の場合、AI法に準拠していることを証明する必要があります。特に、オープンソースモデルは一部の制約から免除されていますが、システミックリスクを有すると見なされた場合は免疫がないことに注意してください。 モデルに対する厳格な義務 規制フレームワークに分類されたモデルは、エネルギー消費量の報告、赤チームまたは敵対的テストの実施、潜在的なシステミックリスクの評価と緩和、および事件の報告を行う必要があります。さらに、モデルの微調整に使用された情報を開示し、開発された場合はよりエネルギー効率の高い基準に準拠する必要があります。 承認プロセスと懸念 欧州議会とEUの27か国はまだ暫定的な合意を承認していません。一方で、フランスやドイツなどの国々から懸念が表明されています。懸念は、ミストラルAI&Aleph Alphaなどの企業によって象徴される欧州のAI競合他社の抑制リスクに焦点を当てています。フランスとドイツは特に、過度の規制がグローバルなAIの景気へのイノベーションと競争力に悪影響を及ぼすことを懸念しています。 関連記事:欧州のAI巨大MISTRAL AIが3億8500万ユーロを調達 私たちの意見 AI規制の複雑な領域を航海する中で、EUのアプローチはイノベーションの促進と潜在的なリスクへの保護の間の微妙なバランスを求めています。提案が承認を待っている間、一部の加盟国から懸念が唱えられています。これはAI分野の統治の将来を描く上で、AI開発者の願望と社会的安全性の必要性をバランスさせる重要な課題を示しています。

Google Researchがジェネレーティブな無限語彙トランスフォーマー(GIVT)を発表 – AIにおける先駆的な実数値ベクトルシークエンス

トランスフォーマーは最初に導入され、自然言語処理の主要なアーキテクチャとして急速に台頭しました。最近では、コンピュータビジョンでも非常に人気があります。Dosovitskiyらは、画像をパッチのシーケンスに分割し、それらのパッチを線形に埋め込み、その結果得られる特徴のシーケンスをトランスフォーマーエンコーダに供給することで、CNNベースのアーキテクチャに勝る効果的な画像分類器を作成する方法を示しました。セグメンテーション、検出、および分類などの多くの区別的なビジョンタスクにおいて、このアプローチは現在の標準です。ただし、生成トランスフォーマーデコーダはある事前定義された有限のボキャブラリーから離散的なトークンを消費して予測するため、画像を(非量子化された)特徴ベクトルのシーケンスにマッピングすることは、トランスフォーマーベースの画像生成には適切ではありません。 このような構造は自然言語に自然に適合し、デコーダーモデル単体では、効果的なトレーニングがインストラクターフォースと強力な連続生成モデリングを介して可能です。最近の取り組みでは、ベクトル量子化変分オートエンコーダ(VQ-VAE)を使用して画像を離散トークンのシーケンスにマッピングし、その後、トランスフォーマーデコーダを使用して潜在的な離散トークンの分布をモデル化するための手法を採用しています。このアプローチは、画像を利用した多走的生成モデルも容易にします。しかし、2段階のメソッドは画像とマルチモーダルコンテンツの作成には適していますが、いくつかの問題があります。 VQ-VAE内のボキャブラリーサイズによって、潜在的なモデリングや画像の細部調整の調整が困難になるため、潜在的なコードの情報量が減少します。また、トークンを使用して密度予測や低レベルの区別的なタスクにトークンを使用するアプリケーションの品質にも影響を与えます。ボキャブラリーサイズの拡大はこの問題の解決に役立ちますが、それによってボキャブラリーの使用が不十分になる場合があります。したがって、高品質なVQ-VAEセットアップでは、エントロピー損失やコードブックの分割などの洗練された方法に頼る必要があります。さらに、巨大なボキャブラリーは記憶容量を多く消費する埋め込み行列をもたらし、異なるモダリティのボキャブラリーが混在するマルチモーダルシナリオでは、問題が発生する可能性があります。研究チームは、これらの問題を回避するために、デコーダーモデルを変更して、離散的なトークンと、したがって、固定された有限のボキャブラリーを必要としない連続した実数値のベクトルシーケンスで動作する生成トランスフォーマーデコーダを提案しています。 特に、Google DeepMindとGoogle Researchの研究チームは、実数値のベクトルシーケンスを用いて機能する生成型無限ボキャブラリートランスフォーマー(GIVT)を提案しています。実数値のベクトルは無限ボキャブラリーと見なすことができるため、研究チームはこれをGIVTと呼んでいます。図1に示されているように、研究チームはトランスフォーマーデコーダの設計をわずかに変更しました(合計2つの変更)。1)入力では、研究チームは離散的なトークンの代わりに連続した実数値のベクトルシーケンスを線形に埋め込む。2)出力では、研究チームは有限のボキャブラリー上のカテゴリカル分布のパラメータを予測するのではなく、連続した実数値のベクトル上の連続した分布のパラメータを予測します。研究チームは、教師強制と因果関係注意マスクを使用してこのモデルをトレーニングしました。また、研究チームはMaskGITに類似した高速進行マスクバイダイレクショナルモデリングも調査しました。 図1は、連続した無限ボキャブラリーのバリエーション(右側のGIVT)を典型的な離散トークン生成トランスフォーマー(左側)と比較するための同じデコーダーモデルを使用しています。 GIVTは、入力時に斜めに並んだ連続した実数値ベクトルのシーケンスで離散トークンを置き換えます。有限のボキャブラリー上のカテゴリカル分布を予測する代わりに、GIVTは出力時に連続した実数値ベクトル上の連続した分布のパラメータを予測します。 高解像度の画像を平坦化して生成されるRGBピクセルの系列は、理論的には任意の特徴ベクトルの系列にGIVTを適用することができるものの、直接的にモデル化するのは難しい例です。それは長くて複雑な分布を持っていることもあります。したがって、研究チームはまず、ガウス事前VAEを使用して低次元の潜在空間をトレーニングし、次にGIVTでモデル化します。これは、VQ-VAEと類似した2段階のテクニックに似ています。研究チームはまた、シーケンスモデリングの文献からいくつかの推論戦略(温度サンプリングや分類器フリーガイディングなど)を転用しました。 注目すべきは、実数値トークンだけを使って、これによってVQベースの技術と同等か優れたモデルが生成されることです。以下に彼らの主な貢献を簡潔に述べます: 1. UViMを使用して、研究チームはGIVTが密な予測タスク(セマンティックセグメンテーション、深度推定、ピクチャーシンセシスなど)において、通常の離散トークン変換デコーダーよりも同等または優れたパフォーマンスを達成することを示しています。 2. 研究チームは、連続ケースにおける従来のサンプリング方法の効果(温度サンプリング、ビームサーチ、分類器フリーガイディング)の派生と有効性を導き出し、証明しました。 3. KL項の重み付けを使用して、研究チームはVAE潜在空間の正規化レベルと現れるGIVTの特性との関連性を検討しました。研究チームは、VQ-VAE文献の洗練されたトレーニング方法(潜在表現への補助損失、コードブックの再初期化、専用の最適化アルゴリズムなど)はVAEおよびGIVTのトレーニングでは使用されていないことを強調しており、単純に通常の深層学習ツールボックスのアプローチに依存していると述べています。

「AWSでMLOpsアーキテクチャを設計する方法」

ガートナーの調査によると、機械学習(ML)プロジェクトのうち、概念実証(POC)から本番まで進展するのはわずか53%ですしばしば戦略的目標と実際の成果の間にズレが生じています

人間に戻る:AIの道:コードからぬいぐるみまでの旅

人工知能(AI)の急速に進化する風景の中で、私たちはアプローチの転換を求める分岐点に立っています。特にシリコンバレーを中心に、テック業界では既存の製品にAIを統合し、増分のイノベーションを生み出す傾向があります。この戦略は、AIに対する一般の人々の理解を深め、抵抗を減らすという点で重要な役割を果たしてきました。しかし、このアプローチは頭打ちになりつつあります。AIの革命的な可能性を実現するためには、人間の根本的なニーズと行動に戻り、AIアプリケーションのための新しい革新的な「チャネル」を築かなければなりません。AIは感性的にならなければなりません! その重要性を強調するため、著名な作家でありデザイン思考家であるドン・ノーマンは、彼の画期的な著書「日常のデザイン」で、製品デザインを人間の本能と反応に整合させることの重要性を強調しています。この原則は、AIアプリケーションにおいても重要です。既存の製品にAIを埋め込むだけではなく、基本的な人間の経験とニーズを理解し、活用することが重要です。 これらの人間中心のデザインを発見するための効果的な手法の一つは、「デザインフィクション」です。この手法は、未来に自分自身を投影して、SF要素や弱いシグナルを活用して新たな使い方を概念化することを意味します。将来のシナリオを想像し、逆算して現在の製品に至るロードマップを作成することで、革新的な使い方を見つけることができます。 AIの変革的な性質を持つためには、持続可能な統合のための新たなパラダイムが必要です。そのためには、ある程度の科学的な洞察力が必要です。DeepMind、Google Research、FAIR、OpenAI、およびNvidiaなどの組織は、科学的な進歩によってこれに足場を築いています。ChatGPTなどの初期のプロトタイプは驚きと可能性を提供しました。次のステップでは、AIを現行の製品に埋め込んで利用性を向上させることが求められます。しかし、真に革新的な使い方を見つけるためには、技術の可能性に合ったものを特定することが重要です。 iPhoneのタッチスクリーンやApp Storeによってもたらされた革命を考えてみてください。スティーブ・ジョブズは、ブラックベリーのキーボードではなくタッチスクリーンを提唱したのは単なる姿勢ではなく、ユーザーの好みとニーズを深く理解していたからです。このアプローチは、最近OpenAIとの議論で示唆されたJony Iveの考え方に似ています。AIにおける同様の画期的な開発を暗示しています。 これらの革新的な使い方を特定するために、私たちは現行の製品にとどまるのではなく、SFや映画の世界に飛び込んでみるべきです。作家たちはそこで未来を予見しています。その一つの良い例は映画やテレビシリーズ「リミットレス」です。NZTという薬を通して人間の能力を高めるという中心テーマは、AIの増強パラダイムと共鳴します。主人公のエディ・モラやブライアン・フィンチは、注意を分散させず、後で細部を思い出すことを示しています。このコンセプトは、深い人類学的なニーズと増強パラダイムに合致します。WhatsAppの会話に集中していたとき、チームメイトが今朝コーヒーマシンであなたに話したことを思い出せたら、それはどんなに素晴らしいことでしょうか。 Rewind AIなどの企業も同様のコンセプトを探求しています。Rewind AIは、基本的なフォトエディティングやチャットボットを超える革命的な技術です。ユーザーは、生活の瞬間を卓越した明瞭さと詳細さで再訪・思い出すことができます。それを物語的な「リミットレス」の薬のようなデジタル版と考えてください。Rewind AIを使用すると、ユーザーは写真アルバムをめくるように、過去の経験を手軽にアクセスして再生することができます。さらに、Rewind AIは、スクリーンから離れているときでも、日常生活を記憶する力を与えるウェアラブル技術の開発も模索しています。最近リリースされたGemini Nanoのような軽量AIモデルのポテンシャルも強調されています。このAI技術の最新進歩は、コンパクトで効率的かつ驚くべきパワフルさを備えた、機械学習の未来を具現化しています。このような軽量でありながら強力なAIモデルを受け入れることで、AIが単なる臨時のアシスタントでなく、私たちの日常生活の一部として完全かつなめらかに統合された世界に一歩近づくのです。 結論として、AIの未来は既存の製品を単に強化するだけでなく、私たちの最も深い人間の本能とニーズと共感する新しい製品を作り出すことにあります。デザインフィクションからインスピレーションを得て、人間の行動の本質を理解することにより、革新的でありながら自然な傾向と欲望と深い共鳴を持つAIアプリケーションを開発することができます。私たちがこの旅に乗り出すにあたり、先見の明のあるデザイナーとAIの専門家との協力は、この変革的なテクノロジーの真の可能性を引き出し、AIが単なるツールではなく、私たちの人間の体験の拡張となる未来への道を開きます。 この記事は「人間に戻る:AIの旅、コードから愛撫へ」がMarkTechPostで最初に掲載されました。

「意思決定の解放:AIが理論的な枠組みと技術の進歩をつなぐ」

私たちの生活は絶え間ない決断と選択から成り立っていますなぜなら、私たちの決定の結果は相当な経済的および社会的影響をもたらすことがあるため、意思決定に関する研究は非常に重要です...

「Tracememを使用して、Pythonのセッションメモリをトラッキングする」

TraceMem(トレースメム)は、Pythonのプロファイリングツールで、特定の瞬間にPythonセッションのメモリ使用量を測定し、その後の変化を追跡することができますこれはデバッグに使用されることができます...

ハグ顔(Hugging Face)での最新技術の組み合わせであるミクストラル(Mixtral)へようこそ

Mixtral 8x7bは、ミストラルが本日リリースした刺激的な大型言語モデルで、オープンアクセスモデルの最新技術基準を上回り、多くのベンチマークでGPT-3.5を凌駕しています。私たちは、MixtralをHugging Faceエコシステムに包括的に統合してのローンチをサポートすることに興奮しています🔥! 本日リリースされる機能と統合には以下があります: ハブ上のモデル、モデルカードとライセンス(Apache 2.0) 🤗 Transformers統合 推論エンドポイントとの統合 高速で効率的な本番推論のためのテキスト生成推論との統合 🤗 TRLを使用した単一のGPUでのMixtralの微調整の例 目次 Mixtral 8x7bとは何ですか 名前について プロンプト形式 分からないこと デモ 推論 🤗 Transformersを使用する テキスト生成推論を使用する 🤗…

メタAIは、リアルタイムに高品質の再照明可能なガウシアンコーデックアバターを構築するための人工知能手法「Relightable Gaussian Codec Avatars」を紹介しますこれにより、新しい表情を生成するためにアニメーションさせることができるハイフィデリティのヘッドアバターが作成されます

“`html 画期的な進展を遂げたMeta AIの研究者たちは、ダイナミックな3Dヘッドアバターの高精細なリライティングを実現するという長年の課題に取り組みました。従来の方法では、特にリアルタイムの応用において効率性が重要となる場合に、表情の複雑な細部を捉えることができるようになるまでに時間がかかることがよくあります。Meta AIの研究チームは、この課題に対処すべく、「リライト可能ガウシアンコーデックアバター」という方法を発表し、アバターのリアリズムの領域を再定義する用意のある手法を作り出しました。 研究チームが取り組んだ中核的な問題は、ダイナミックな顔のシーケンスにおいて、髪の毛や毛穴などのサブミリメートルの詳細をより明確に捉える必要があるということです。目、肌、髪などの人間の頭部の異質な材料を効率的にモデル化しながら、すべて周波数の反射に対応するというのは困難な課題です。既存の手法の制約は、リアリズムとリアルタイムのパフォーマンスをシームレスに組み合わせる革新的な解決策が必要とされています。 リライト可能なアバターに関する既存のアプローチは、リアルタイムのパフォーマンスと忠実度のトレードオフに悩まされてきました。リアルタイムのアプリケーションにおいて、動的な顔の詳細を捉えることができるメソッドが必要とされてきたのです。Meta AIの研究チームは、この課題に目をつけ、「リライト可能ガウシアンコーデックアバター」を革新的な解決策として導入しました。 Meta AIの手法は、3Dガウシアンに基づくジオメトリモデルを導入し、サブミリメートルの精度まで拡張する精密さを提供しています。これは、ダイナミックな顔のシーケンスを捉えるための大幅な進歩であり、髪の毛や毛穴の微妙なニュアンスを含め、アバターが生命的な詳細を示すことを保証します。この革新的な手法の重要な要素であるリライト可能な外観モデルは、学習可能な輝度伝達に基づいています。 https://arxiv.org/abs/2312.03704 これらのアバターの優れた点は、アバターの構築における包括的なアプローチにあります。3Dガウシアンによってパラメータ化されたジオメトリモデルは、アバターのバックボーンを形成し、ガウシアンスプラッティング技術を使用した効率的なレンダリングを可能にします。学習可能な輝度伝達によって駆動される外観モデルは、拡散球面調和関数と反射球面ガウシアンを組み合わせています。この組み合わせにより、アバターは点光源と連続的な照明によるリアルタイムのリライティングを実現できます。 これらの技術的側面を超えて、この手法は表情、視線、ビュー、照明に対する切り離し可能な制御を紹介しています。アバターは、潜在的な表情コード、視線情報、および目標視野方向を利用してダイナミックにアニメーション化することができます。この制御のレベルは、アバターアニメーションにおける重要な進展であり、繊細でインタラクティブなユーザーエクスペリエンスを提供します。 これらのアバターは、単なる理論的な進展ではありません。その手法によって、ヘッドマウントカメラからのライブビデオによるアニメーションが実証されています。この能力により、リアルタイムのビデオ入力がアバターをシームレスに動かすことで、ダイナミックでインタラクティブなコンテンツを作り出すことができます。 総括すると、Meta AIの「リライト可能ガウシアンコーデックアバター」は、複雑な課題に対処するためのイノベーションの力を示すものです。3Dガウシアンに基づくジオメトリモデルと革新的な学習可能な輝度伝達の外観モデルを組み合わせることで、研究チームは既存の手法の制約を超え、アバターのリアリズムに新たな基準を打ち立てました。 “`

「NVIDIAがゲームチェンジャーとマーケットメーカーへの投資でAI革命を推進する方法」

偉大な企業は物語によって繁栄します。NVIDIAのベンチャーキャピタル担当であるシド・サイディックは、これをよく知っています。 サイディックは、最初の仕事のひとつで、投資家のミーティングからプレゼン資料を運び回り、トレーラーでの仕事中に、ドアが開くと「揺れる」トレーラーで、スタートアップのCEOとマネジメントチームが物語を伝えるのを手伝いました。 そのCEOはJensen Huangであり、スタートアップはNVIDIAでした。 サイディックは、投資家と起業家として働いた経験から、顧客やパートナー、従業員や投資家など、会社の物語を早い段階で共有するために適切な人々を見つけることがどれほど重要かを知っています。 この原則こそが、NVIDIAが次世代イノベーションを支援するために取り組んでいる多面的なアプローチの基盤です。この戦略は、NVIDIAの企業開発責任者であるヴィシャル・バグワティも支持しています。 この取り組みは、今年に入ってこれまでに2ダース以上の投資を果たしました。AIと加速コンピューティングのイノベーションのペースが加速するにつれ、さらに加速しています。 AIエコシステムを支援するNVIDIAの三本の戦略 NVIDIAがエコシステムを投資する方法は3つあります。まず、バグワティが監督するNVIDIAの企業投資によるもの。次に、サイディックが率いる私たちのベンチャーキャピタル部門であるNVenturesによるもの。そして最後に、ベンチャーキャピタルとスタートアップを結び付ける私たちのNVIDIA Inceptionです。 PwCによれば、AIだけで2030年までに世界経済に15兆ドル以上の寄与ができる可能性があります。したがって、現在AIと加速コンピューティングに取り組んでいる場合、NVIDIAは手助けする準備ができています。あらゆる業界の開発者が加速コンピューティングアプリケーションを作成しています。そして、まだ始まったばかりです。 その結果、AIの物語を日々進化させている企業のコレクションが生まれました。Cohere、CoreWeave、Hugging Face、Inflection、Inceptiveなどが含まれます。私たちは彼らと一緒にいます。 「NVIDIAと提携することはゲームチェンジャーです」とMachina LabsのCEOであるEd Mehrは言いました。 「彼らの類まれな専門知識が、私たちのAIとシミュレーション能力を飛躍的に向上させます」。 企業投資:エコシステムの成長 NVIDIAの企業投資部門は戦略的な協力に焦点を当てています。これらのパートナーシップは共同イノベーションを促進し、NVIDIAプラットフォームを強化し、エコシステムを拡大します。2023年の始め以来、14件の投資に関する発表が行われています。 これらのターゲット企業には、チップ間の光接続に特化したAyar Labsや、先進的なAIモデルのハブであるHugging Faceなどがあります。 ポートフォリオには、次世代のエンタープライズソリューションも含まれています。Databricksは、機械学習のための業界をリードするデータプラットフォームを提供しており、CohereはAIを通じた企業自動化を提供しています。他の注目すべき企業にはRecursion、Kore.ai、Utilidataなどがあり、それぞれが薬物発見、会話型AI、スマート電力グリッドのユニークなソリューションを提供しています。 消費者サービスも投資の焦点です。Inflectionは、クリエイティブ表現のためのパーソナルAIを作り上げており、Runwayは生成AIを通じたアートと創造性のプラットフォームとして機能しています。…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us