Learn more about Search Results towardsdatascience - Page 20

デプロイ可能な機械学習パイプラインの構築

多くのデータサイエンティストは、最初のコーディング体験をノートブックスタイルのユーザーインターフェースを通じて行いますノートブックは、探索のために欠かせないものであり、私たちのワークフローの重要な要素ですしかし...

クエリを劇的に改善できる2つの高度なSQLテクニック

SQLは、すべてのデータプロフェッショナルにとっての基本ですデータアナリスト、データサイエンティスト、データエンジニアであるかどうかに関係なく、クリーンで効率的なコードを書く方法をしっかりと理解している必要があります

技術的なバックグラウンドがなくてもデータサイエンティストになる方法:ヒントと戦略

通常投稿している内容とは少し異なるストーリーになります具体的なツールや技術の紹介でもなく、チュートリアルや実践例でもありません今回は、私がいつも考えていた質問に答えたいと思います...

A/Bテストの際によくある4つの失敗とその解決方法

A/Bテストは、成功した実験の基盤を形成する相互に関連する部分の繊細なバランスであると言えますジェンガのゲームと同様に、間違ったブロックを取り除くことが原因で…

Hugging Face Datasets での作業

AIプラットフォームであるHugging Faceは、最先端のオープンソースの機械学習モデルの構築、トレーニング、展開を行いますこれらのトレーニング済みモデルをホスティングするだけでなく、Hugging Faceはデータセットもホスティングしています...

レコメンダーシステムにおけるPrecision@NとRecall@Nの解説

Accuracy Metrics(正解率指標)は、機械学習の全体的なパフォーマンスを評価するための有用な指標であり、データセット内の正しく分類されたインスタンスの割合を示します評価指標では…

ルシーンの内部 – 整数のエンコーディングと圧縮の取り扱い

Luceneにおいて整数がどのようにエンコードされ、圧縮されているかを探求し、逆索引が主役となる世界に没入してくださいPackedInts、VInt、FixedBitSet、RoaringDocIdSet(Roaring Bitmaps)について深く掘り下げてください

ニューラルネットワークにおける活性化関数の種類

ニューラルネットワークの活性化関数は、ディープラーニングの重要な部分であり、トレーニングモデルの精度と効率を決定します。大規模なニューラルネットワークの作成や分割に使用されるモデルとディープラーニングモデルの出力を決定します。活性化関数は、関連するデータに焦点を当てながら、他のデータを破棄するため、ニューラルネットワークにとって貴重なツールです。他の関数と同様に、活性化関数(転送関数)は入力を受け取り、その入力に比例する出力を返します。ニューラルネットワークのノードの活性化関数は、特定の入力または入力グループに対するノードの出力を指定します。 意図した結果を達成するために、どのニューロンを活性化または非活性化するか効果的に選択します。入力も非線形に変換され、高度なニューラルネットワークでのパフォーマンスが向上します。1から-1までの情報は、活性化関数で出力を正規化することができます。ニューラルネットワークは通常、何百万ものデータポイントでトレーニングされるため、活性化関数が高速であり、結果を計算するために必要な時間を最小限に抑えることが重要です。 さて、ニューラルネットワークの構造を確認し、ニューラルネットワークアーキテクチャがどのように組み立てられ、ニューラルネットワークにどの要素が存在するかを見てみましょう。 人工ニューラルネットワークは、多くのリンクされた個々のニューロンを含んでいます。各ニューロンの活性化関数、バイアス、および重みが指定されます。 入力層 – ドメインの生データが入力層に送られます。この層は計算が行われる最も低いレベルです。これらのノードが行う唯一のことは、データを次の隠れ層に中継することです。 隠れ層 – 入力層から特徴を受け取った後、隠れ層はさまざまな計算を行い、結果を出力層に渡します。レイヤー2のノードは表示されず、基礎となるニューラルネットワークの抽象化レイヤーを提供します。 出力層 – ネットワークの隠れ層の出力がこの層でまとめられ、ネットワークの最終的な値が提供されます。 活性化関数の重要性 線形方程式は1次の多項式であるため、活性化関数を持たないニューラルネットワークは単なる線形回帰モデルです。解くのは簡単ですが、複雑な問題や高次の多項式に対処する能力は制限されています。 活性化関数は、ニューラルネットワークに非線形性を提供するために使用されます。活性化関数の計算は、順伝播の各層で追加のステップを行いますが、その手間は十分に報われます。 活性化関数がない場合、各ニューロンは重みとバイアスを使用して入力に対する線形変換を行います。2つの線形関数の合成は、それ自体が線形関数です。したがって、ニューラルネットワークの隠れ層の総数はその動作に影響を与えません。 活性化関数の種類 ニューラルネットワークは、異なる活性化関数が使用される3つの主要な部分に分類されます。 バイナリステップ関数 線形関数 非線形活性化関数 バイナリステップニューラルネットワークの活性化関数 バイナリステップ関数…

テーブル内の重複した値を見つけるための最高のSQLトリック2つ

まず、重複行の基準を定義してくださいテーブルから重複レコードを見つける方法の一つは、GROUP BYとHAVINGですもう一つの方法はROW_NUMBER()です詳細はこちらをご覧ください

Cox回帰の隠されたダークシークレット:Coxを解きほぐす

もし以前のブログ投稿をフォローしていた場合、ロジスティック回帰が完全に分離されたデータにフィットしようとすると問題が発生し、オッズ比が無限大になることを思い出すかもしれません

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us