Learn more about Search Results Ford - Page 20
- You may be interested
- DataFrameを効率的に操作するためのloc Pa...
- オープンAIは、開発者のアリーナでより大...
- 量子コンピュータを使ってより高度な機械...
- 「盲目的なキャリブレーションによる無線...
- なぜ私たちはニューラルネットワークを持...
- 「Pythonで脂肪尾を数値化する4つの方法」
- 「企業がGoogle Cloud AIを利用する7つの...
- データプライバシーを考える新しい方法
- PythonでP値を使用して相関行列を構築する
- 「知識の回復が中心舞台に登場する」
- 「Microsoft Azureの新しいディープラーニ...
- なぜあなたのビジネスは生成型AIを活用す...
- 「AIツールのためのベスト5のブラックフラ...
- 「Amazon SageMaker Feature Storeを使用...
- 科学ソフトウェアの開発
「Wall-Eのための経路探索アルゴリズムの探求」
以前、グラフ探索アルゴリズムの実装を統一する方法を示しました今回は、それをより視覚的に魅力的にし、パフォーマンスの違いを調べます
「5つの最高のオープンソースLLM」
人工知能(AI)の急速に進化する世界では、大規模言語モデル(LLM)が中心となり、革新を推進し、私たちが技術とのやり取りを再構築する方法を変えましたこれらのモデルがますます洗練されるにつれて、それらへのアクセスを民主化することが重視されています特にオープンソースのモデルは、この民主化において重要な役割を果たしています[…]
「ドメイン特化LLMの潜在能力の解放」
イントロダクション 大規模言語モデル(LLM)は世界を変えました。特にAIコミュニティにおいて、これは大きな進歩です。テキストを理解し、返信することができるシステムを構築することは、数年前には考えられなかったことでした。しかし、これらの機能は深さの欠如と引き換えに得られます。一般的なLLMは何でも屋ですが、どれも専門家ではありません。深さと精度が必要な領域では、幻覚のような欠陥は高価なものになる可能性があります。それは医学、金融、エンジニアリング、法律などのような領域がLLMの恩恵を受けることができないことを意味するのでしょうか?専門家たちは、既に同じ自己教師あり学習とRLHFという基礎的な技術を活用した、これらの領域に特化したLLMの構築を始めています。この記事では、領域特化のLLMとその能力について、より良い結果を生み出すことを探求します。 学習目標 技術的な詳細に入る前に、この記事の学習目標を概説しましょう: 大規模言語モデル(LLM)とその強みと利点について学びます。 一般的なLLMの制限についてさらに詳しく知ります。 領域特化のLLMとは何か、一般的なLLMの制限を解決するためにどのように役立つのかを見つけます。 法律、コード補完、金融、バイオ医学などの分野におけるパフォーマンスにおけるその利点を示すためのさまざまな領域特化言語モデルの構築について、例を交えて探求します。 この記事はData Science Blogathonの一部として公開されました。 LLMとは何ですか? 大規模言語モデル(LLM)とは、数億から数十億のパラメータを持つ人工知能システムであり、テキストを理解し生成するために構築されます。トレーニングでは、モデルにインターネットのテキスト、書籍、記事、ウェブサイトなどからの多数の文を提示し、マスクされた単語または文の続きを予測するように教えます。これにより、モデルはトレーニングされたテキストの統計パターンと言語的関係を学びます。LLMは、言語翻訳、テキスト要約、質問応答、コンテンツ生成など、さまざまなタスクに使用することができます。トランスフォーマーの発明以来、無数のLLMが構築され、公開されてきました。最近人気のあるLLMの例には、Chat GPT、GPT-4、LLAMA、およびStanford Alpacaなどがあり、画期的なパフォーマンスを達成しています。 LLMの強み LLMは、言語理解、エンティティ認識、言語生成の問題など、言語に関するさまざまな課題のためのソリューションとして選ばれるようになりました。GLUE、Super GLUE、SQuAD、BIGベンチマークなどの標準的な評価データセットでの優れたパフォーマンスは、この成果を反映しています。BERT、T5、GPT-3、PALM、GPT-4などが公開された時、それらはすべてこれらの標準テストで最新の結果を示しました。GPT-4は、BARやSATのスコアで平均的な人間よりも高得点を獲得しました。以下の図1は、大規模言語モデルの登場以来、GLUEベンチマークでの大幅な改善を示しています。 大規模言語モデルのもう一つの大きな利点は、改良された多言語対応の能力です。たとえば、104の言語でトレーニングされたマルチリンガルBERTモデルは、さまざまな言語で優れたゼロショットおよびフューショットの結果を示しています。さらに、LLMの活用コストは比較的低くなっています。プロンプトデザインやプロンプトチューニングなどの低コストの方法が登場し、エンジニアはわずかなコストで既存のLLMを簡単に活用することができます。そのため、大規模言語モデルは、言語理解、エンティティ認識、翻訳などの言語に基づくタスクにおけるデフォルトの選択肢となっています。 一般的なLLMの制限 Web、書籍、Wikipediaなどからのさまざまなテキストリソースでトレーニングされた上記のような一般的なLLMは、一般的なLLMと呼ばれています。これらのLLMには、Bing ChatのGPT-4、PALMのBARDなどの検索アシスタント、マーケティングメール、マーケティングコンテンツ、セールスピッチなどのコンテンツ生成タスク、個人チャットボット、カスタマーサービスチャットボットなど、さまざまなアプリケーションがあります。 一般的なAIモデルは、さまざまなトピックにわたるテキストの理解と生成において優れたスキルを示していますが、専門分野にはさらなる深さとニュアンスが必要な場合があります。たとえば、「債券」とは金融業界での借入の形態ですが、一般的な言語モデルはこの独特なフレーズを理解せず、化学や人間同士の債券と混同してしまうかもしれません。一方、領域特化のLLMは、特定のユースケースに関連する専門用語を専門的に理解し、業界固有のアイデアを適切に解釈する能力があります。 また、一般的なLLMには複数のプライバシーの課題があります。たとえば、医療LLMの場合、患者データは非常に重要であり、一般的なLLMに機械学習強化学習(RLHF)などの技術が使用されることで、機密データの公開がプライバシー契約に違反する可能性があります。一方、特定のドメインに特化したLLMは、データの漏洩を防ぐために閉じたフレームワークを確保します。…
「生成AIの規制」
生成型の人工知能(AI)が注目を集める中、この技術を規制する必要性が高まっていますなぜなら、この技術は大規模な人口に対して迅速に負の影響を与える可能性があるからです影響は以下のようなものが考えられます...
AWSは、大規模なゲーミング会社のために、Large Language Model (LLM) を使って有害なスピーチを分類するためのファインチューニングを行います
「ビデオゲーム業界は、世界中で30億人以上のユーザーベースを持っています1毎日大量のプレイヤーが仮想的にお互いとやり取りしています残念ながら、現実の世界と同様に、すべてのプレイヤーが適切に礼儀正しくコミュニケーションを取るわけではありません社会的責任を持ったゲーム環境を作り維持するために、AWSは努力しています…」
「2023年に機械学習とコンピュータビジョンの進歩について最新情報を入手する方法」
学界や産業界で実践している機械学習やコンピュータビジョンの最近の進展に圧倒されていますか?YouTubeチャンネル、ニュースレター、ポッドキャスト、プラットフォームなどを知っていますか?
「グラフ機械学習 @ ICML 2023」
「壮大なビーチとトロピカルなハワイの風景🌴は、勇敢な科学者たちを国際機械学習会議に出席し、最新の研究成果を発表することから遠ざけませんでした...」
data2vec 自己教師あり学習における画期的な進歩
「機械学習モデルは、訓練にラベル付きデータを大いに依存してきました従来の考え方では、ラベル付きデータでモデルを訓練することで正確な結果が得られますしかし、ラベル付きデータを使用する主なデメリットは、訓練データのサイズが増えるにつれて上昇する高い注釈コストです高い注釈コストは、[…]にとって大きなハードルとなります」
ChatGPTと高度なプロンプトエンジニアリング:AIの進化を推進する
「高度なプロンプト工学について学び、テクノロジーとのコミュニケーションにおける役割、ChatGPTなどのツールの応用について学ぶ」
現代の自然言語処理(NLP):詳細な概要パート4:最新の展開
現在の世界では、ウェブに接続している人なら誰でもChatGPTというツールを聞いたことがあり、それがあちこちで混乱を引き起こし、中には日常のさまざまなタスクに使用しようと試みた人もいます...
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.