Learn more about Search Results 認証 - Page 20
- You may be interested
- AIが詐欺師をだます:ロボコールに対する...
- 「ラフと共にパイソンのコーディングスタ...
- 「データサイエンスのワークフローをマス...
- キャッシュイン:「PAYDAY 3」がGeForce N...
- 「Matplotlibでカラーマップをカスタマイ...
- 化学プロセス開発のためのモデルフリー強...
- 「デバイス内AIの強化 QualcommとMetaがLl...
- 「Azure Machine Learningによる機械学習...
- 「AIの襲撃を生き残る5つの収益性の高い小...
- このAI論文は、「サブセンテンスエンコー...
- 「ファインチューニング中に埋め込みのア...
- 「Neo4jにおける非構造化テキストに対する...
- Hamiltonを使って、8分でAirflowのDAGの作...
- メタは、AIを活用した「パーソナ」と呼ば...
- ディープAIの共同創業者兼CEO、ケビン・バ...
「Googleのアルゴリズムによって、FIDO暗号化は量子コンピュータから安全になります」
GoogleとスイスのETH Zurichの研究者によって開発されたポスト量子暗号(PQC)アルゴリズムは、FIDO2セキュリティキーに対して量子耐性のある暗号化を可能にします
「生成AIの風景を探索する」
ジェネレーティブAIは、特にニューラルネットワークを用いて、与えられたデータセット内のパターンを解読するために、さまざまな機械学習技術を使用します
「キャリアのために右にスワイプ:仕事のためのTinderを作る」
「幅広い雇用の世界で完璧な仕事や候補者を見つけることは、ハンニンを干し草の中から見つけるよりも難しいと知っていますか?心配しないでください、親愛なる読者の皆さん、私たちは今、探求の旅に乗り出す準備をしています...」
「25以上のChatGPTのプロンプトで、より多くのリードを生成し(そしてより多くの売り上げを生み出す)」
「競合他社がより多くのリードを得るためにAIツールを使用しているため、あなたは彼らに負けていますあなたも同じことをすべきです」
「LlaMA 2の始め方 | メタの新しい生成AI」
イントロダクション OpenAIからGPTがリリースされて以来、多くの企業が独自の堅牢な生成型大規模言語モデルを作成するための競争に参入しました。ゼロから生成型AIを作成するには、生成型AIの分野での徹底的な研究と数多くの試行錯誤が必要な場合があります。また、大規模言語モデルの効果は、それらが訓練されるデータに大きく依存するため、高品質なデータセットを注意深く編集する必要があります。さらに、これらのモデルを訓練するためには膨大な計算能力が必要であり、多くの企業がアクセスできない状況です。そのため、現時点では、OpenAIやGoogleを含むわずかな企業しかこれらの大規模言語モデルを作成できません。そして、ついにMetaがLlaMAの導入でこの競争に参加しました。 学習目標 新しいバージョンのLlaMAについて知る モデルのバージョン、パラメータ、モデルのベンチマークを理解する Llama 2ファミリのモデルにアクセスする さまざまなプロンプトでLlaMA 2を試して出力を観察する この記事はData Science Blogathonの一環として公開されました。 Llamaとは何ですか? LlaMA(Large Language Model Meta AI)は、特にMeta AI(元Facebook)が所有する会社であるMeta AIによって開発された基礎となる大規模言語モデルのグループである生成型AIモデルです。Metaは2023年2月にLlamaを発表しました。Metaは、7、13、33、および65兆のパラメータを持つコンテキスト長2kトークンの異なるサイズのLlamaをリリースしました。このモデルは、研究者がAIの分野での知識を進めるのを支援することを目的としています。小型の7Bモデルは、計算能力が低い研究者がこれらのモデルを研究することを可能にします。 LlaMaの導入により、MetaはLLMの領域に参入し、OpenAIのGPTやGoogleのPaLMモデルと競合しています。Metaは、限られた計算リソースで小さなモデルを再トレーニングまたは微調整することで、それぞれの分野で最先端のモデルと同等の結果を達成できると考えています。Meta AIのLlaMaは、LlaMAモデルファミリが完全にオープンソースであり、誰でも無料で使用できるだけでなく、研究者のためにLlaMAの重みを非営利目的で公開しているため、OpenAIやGoogleのLLMとは異なります。 前進 LlaMA…
テキスト読み上げ(TTS)とAIにおける倫理的考慮事項:データセキュリティにスポットライトを当てる
人工知能(AI)および自然言語処理(NLP)技術の急速な進歩により、テキスト音声変換(TTS)システムなどの非常に洗練されたアプリケーションが生まれましたこれらのシステムは、ディープラーニングアルゴリズムによって駆動されており、テキスト入力を自然な人間の音声に変換する能力を持っていますこれにより、エンターテイメント、教育、アクセシビリティ、および顧客サービスなどの産業が革新されましたしかし、... テキスト音声変換(TTS)およびAIにおける倫理的考慮事項:データセキュリティにスポットライトを当てる 詳細を読む »
「Amazon SageMaker Data WranglerでAWS Lake Formationを使用して細粒度のデータアクセス制御を適用する」
「SageMaker Data Wranglerは、Amazon EMRと組み合わせてLake Formationを利用できるようになり、この細かいデータアクセス制限を提供することをお知らせできることを嬉しく思います」
LLMOPS vs MLOPS AI開発における最良の選択肢を選ぶ
はじめに 人工知能(AI)の開発が急速に進化する中で、効率的な運用手法の統合が重要となっています。このニーズに対応するために、LLMOPSとMLOPSという2つの重要な手法が登場しました。これらの手法は、類似した目標を共有しているものの、異なる利点と課題を持っています。本記事では、LLMOPSとMLOPSについて詳しく説明し、それぞれの定義、比較、および実装戦略についての洞察を提供し、AI開発において最適な道を選択するための情報を提供します。 LLMOpsとは何ですか? LLMOpsは、「Language Model Operations」の頭字語であり、GPT-3.5などの言語モデルの効率的な開発と展開を目指した専門の手法とワークフローを指します。これらの手法には、データの前処理、モデルのトレーニング、微調整、展開など、さまざまな活動が含まれています。LLMOpsは、言語モデル固有の課題を認識し、運用戦略をそれに合わせて調整します。 MLOpsとは何ですか? MLOpsは、「Machine Learning Operations」の頭字語であり、ソフトウェアエンジニアリングの手法と機械学習のワークフローを統合し、AIモデルの展開とメンテナンスを容易にする包括的なアプローチです。MLOpsは、トレーニング、テスト、展開、監視など、機械学習モデルのライフサイクル全体で一貫性のある自動化されたパイプラインの作成に重点を置いています。 また、以下も参照してください:End-to-End MLOps Architecture and Workflow(エンド・トゥ・エンドのMLOpsアーキテクチャとワークフロー) LLMOPS vs MLOPS:利点と課題 LLMOpsとMLOpsはそれぞれ独自の利点と課題を持っています。各手法の主な利点と課題について探ってみましょう。 LLMOPSの利点 言語モデルに特化: LLMOPSは、言語モデルに特化しています。言語データの複雑さを認識し、言語モデルからより優れたパフォーマンスを引き出すための最適化された手法を採用しています。これにより、より正確で文脈に即した出力が得られます。これは、自然言語理解や生成のタスクにおいて重要です。 効率的なトレーニング: LLMOPSの焦点は言語モデルにあるため、より効率的なトレーニングプロセスが可能です。言語ドメインに特化した技術や前処理方法は、トレーニング時間を大幅に短縮することができます。これにより、開発サイクルが加速し、より迅速な実験とモデルの改善が可能となります。…
AWSインフラストラクチャを手動で作成するのをやめましょうTerraformを使用しましょう!
「Terraformを使用したインフラストラクチャとしてのコード(IaC)ツールのチュートリアルAWSの本番用インフラストラクチャ(EC2、ネットワーク、セキュリティグループ)の構築方法について解説します」
「Amazon Redshift」からのデータを使用して、Amazon SageMaker Feature Storeで大規模なML機能を構築します
Amazon Redshiftは、一日にエクサバイトのデータを分析するために数万人の顧客に利用されている、最も人気のあるクラウドデータウェアハウスです多くのプラクティショナーは、Amazon SageMakerを使用して、完全に管理されたMLサービスであるAmazon Redshiftデータセットを規模拡大して機械学習(ML)を行うために、オフラインで機能を開発する要件を持っています
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.