Learn more about Search Results こちら - Page 20

「読んだものに関してのみ話すこと:LLM(Language Model)は事前学習データを超えて一般化できるのか?」

「インコンテキスト学習は、大規模言語モデルを成功させた秘密の一つであり、しかし今日でも多くの点が未解明ですこの信じられないほどの能力の限界は何なのでしょうか...」

Google Translateが同音異義語を認識する方法を教えた方法

Google Translateのニューラルモデルがベースとベースの違いを理解する方法

「LLMの評価にLLMを使用する」

ChatGPTには何百万もの異なる方法で行動するように頼むことができます栄養士や言語講師、医者などとしての役割も果たしますOpenAI APIの上で多くのデモや製品がリリースされるのは驚くことではありませんしかし...

「マルチプレーナーUNet:すべての3Dセグメンテーションタスクに対応した1つのUNet(データが少ない場合でも)- ローコードアプローチ」

「博士号の取得を開始した後、最初に本物の医療画像セグメンテーションプロジェクトとしてぶつかったのは、膝のMRIセグメンテーションでしたトレーニングと検証に使用するMRI画像はわずか39枚で、20枚...」

データサイエンティストが知っておくべき10の必須パンダ機能

この記事には、データサイエンティストにとって重要で便利な10個のパンダの関数が含まれています

「Rustでの14倍のスピードブーストには、Polarsプラグインの使用がおすすめです」

ポラーズは、その速度、メモリ効率、美しいAPIのおかげで世界中で大流行していますそのパワーを知りたいなら、DuckDBベンチマークを見るべきですそして、これらは…

「2023年に大型言語モデル(LLM)から始めましょう」

まず、もしプログラミングやAIの知識が全くない場合は、この目的に特化したガイドを参考にして戻ってきてください!このガイドは、プログラミングの少ないバックグラウンドを持つ人を対象にしています...

「KOSMOS-2:Microsoftによるマルチモーダルな大規模言語モデル」

イントロダクション 2023年はAIの年となりました。言語モデルから安定した拡散モデルの強化にSegMind APIを使うまで、AI技術は進化し続けています。その中で、Microsoftが開発したKOSMOS-2が注目を浴びています。これはマイクロソフトによって開発されたマルチモーダルの大規模言語モデル(MLLM)であり、テキストと画像の理解力において画期的な能力を発揮しています。言語モデルを開発することは一つのことですが、ビジョンモデルを作成することは別のことです。しかし、両方の技術を組み合わせたモデルを持つことは、さらなるレベルの人工知能を実現することになります。この記事では、KOSMOS-2の特徴と潜在的な応用について掘り下げ、AIと機械学習への影響を解説します。 学習目標 KOSMOS-2のマルチモーダル大規模言語モデルの理解 KOSMOS-2のマルチモーダルグラウンディングと参照表現生成の仕組みの学習 KOSMOS-2の現実世界での応用について洞察を得る KOSMOSを使ったColabでの推論の実行 この記事はデータサイエンスブログマラソンの一部として公開されました。 KOSMOS-2モデルの理解 KOSMOS-2はマイクロソフトの研究チームによる研究成果で、そのタイトルは「Kosmos-2: Grounding Multimodal Large Language Models to the World(KOSMOS-2:マルチモーダル大規模言語モデルのグラウンディング)」です。テキストと画像を同時に処理し、マルチモーダルデータとの相互作用を再定義することを目指して設計されたKOSMOS-2は、他の有名なモデルであるLLaMa-2やMistral AIの7bモデルと同様にトランスフォーマーベースの因果言語モデルのアーキテクチャを採用しています。 しかし、KOSMOS-2の特徴はその独自のトレーニングプロセスです。特殊なトークンとして画像内のオブジェクトへの参照を含むテキストである、GRITと呼ばれる巨大なデータセットでトレーニングされています。この革新的なアプローチにより、KOSMOS-2はテキストと画像の新たな理解を提供することができます。 マルチモーダルグラウンディングとは何ですか? KOSMOS-2の特徴的な機能の一つは、「マルチモーダルグラウンディング」の能力です。これは、画像のオブジェクトとその位置を記述するイメージキャプションを生成することができるという意味です。これにより、言語モデルにおける「幻覚」の問題を劇的に減少させ、モデルの精度と信頼性を向上させることができます。 この概念は、テキストを画像内のオブジェクトに特殊なトークンを通じて接続し、実質的にはオブジェクトを視覚的な文脈に結びつけるというものです。これにより幻覚が減少し、正確なイメージキャプションの生成能力が向上します。…

(CodeGPT AIコミュニティで話題となっている新たなコード生成ツールにご紹介します)

新しいAIコード生成ツールの中で、CodeGPTはプログラマーの間で好評を博しています。CodeGPTはVisual Studio Codeのアドオンであり、GPT-3言語モデルを活用してコードを生成し、言語を翻訳し、さまざまなタイプのコンテンツを書き、質問に答えることができます。 CodeGPTは現在開発中ですが、開発者がコードを作成する方法を変える可能性があります。CodeGPTが自然言語を理解する能力は、他のAIコード生成ツールとは異なる特徴の一つです。つまり、形式的なプログラミング用語を使用せずに、開発者は自然言語で書かれた説明に基づいてCodeGPTにコードの構築を指示することができます。特に新しい言語やフレームワークを学ぶ開発者にとって、このような時間の節約は大きなものになることがあります。 CodeGPTのもう一つの利点は、効率的でより独自なコードを生成できる能力です。CodeGPTは実際のプロジェクトの大量のコードコーパスでトレーニングされているため、各プログラミング言語の標準と規範に精通しています。 最後に、CodeGPTには頻繁に更新と改良が行われます。CodeGPTチームはソフトウェアを新しい機能で常に更新し、発生する問題を修正します。これにより、CodeGPTは常にコード生成、言語翻訳、コンテンツ作成、質問に答えるなどのさまざまなタスクで改善され続けています。 CodeGPTの応用範囲: CodeGPTは不完全または曖昧なコードスニペットを自動的に完成させることができます。特に大規模で複雑なコードベースの扱いにおいて、エンジニアにとって時間の節約になります。 CodeGPTで関数、クラス、さらにはプログラム全体を生成することができます。これは、基本的なコードを素早く生成したり、新しいコンセプトを開発したりするのに役立ちます。 CodeGPTの支援により、コードの再構築が容易になり、より独自で書きやすいコード構造をプログラマーに推奨します。また、一般的なセキュリティの欠陥を見つけて修正するのにも役立ちます。 コードのデバッグに関しては、CodeGPTはミスの可能性のある理由を提案し、修正方法に関するアドバイスを提供する便利なツールです。 バグの発見:CodeGPTは、開発者が潜在的な問題を特定し、コードの正確性をチェックするためのテストを提供することで、コードの欠陥を明らかにするのに役立ちます。 適切に使用すると、CodeGPTはプログラマがコードを生成する速度、効率、品質を向上させる強力なツールです。 CodeGPTを入手できる場所:https://marketplace.visualstudio.com/items?itemName=DanielSanVoAGI.dscodegpt&ssr=false Mistralはこちらからダウンロードして使用することができます:https://docs.codegpt.co/docs/tutorial-ai-providers/ollama Introducing CodeGPT, running the @MistralAI 7B model locally in…

基本に戻ろう:プロビット回帰

「バイナリの結果を分析するタスクに取り組む際、私達はしばしばロジスティック回帰を手段として考えますそのため、バイナリ結果回帰に関するほとんどの記事は独占的に焦点を当てています...」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us