Learn more about Search Results ​ - Page 19

ハギングフェイスフェローシッププログラムの発表

フェローシップは、さまざまなバックグラウンドを持つ優れた人々のネットワークであり、機械学習のオープンソースエコシステムに貢献しています🚀。このプログラムの目標は、主要な貢献者に力を与え、彼らの影響力をスケールさせると同時に、他の人々にも貢献を促すことです。 フェローシップの仕組み 🙌🏻 これはHugging Faceが貢献者の素晴らしい仕事をサポートしています!フェローであることは、すべての人にとって異なる方法で機能します。重要な質問は次のとおりです: ❓ 貢献者がより大きな影響を持つためには何が必要ですか? Hugging Faceは彼らが常にやりたかったプロジェクトを実現できるようにどのようにサポートできますか? あらゆるバックグラウンドのフェローを歓迎します!機械学習の進歩は草の根の貢献に依存しています。それぞれの人には、さまざまな方法でこの分野を民主化するために使用できる独自のスキルと知識があります。それぞれのフェローは異なる方法で影響を与え、それは完璧です🌈。 Hugging Faceは彼らが最も必要とする方法で創造し、共有し続けることをサポートします。 フェローシップに参加することの利点は何ですか? 🤩 利点は個々の興味に基づきます。Hugging Faceがフェローをサポートする例をいくつか紹介します: 💾 コンピューティングとリソース 🎁 マーチャンダイズと資産。 ✨ Hugging Faceからの公式な認知。 フェローになるには…

機械学習の専門家 – Sasha Luccioni

🤗 マシンラーニングエキスパートへようこそ – サーシャ・ルッチョーニ 🚀 サーシャのようなMLエキスパートがあなたのMLロードマップを加速する方法に興味がある場合は、hf.co/supportを訪れてください。 こんにちは、友達たち!マシンラーニングエキスパートへようこそ。私は司会者のブリトニー・ミュラーで、今日のゲストはサーシャ・ルッチョーニです。サーシャは、Hugging Faceで研究科学者として、機械学習モデルとデータセットの倫理的・社会的影響に取り組んでいます。 サーシャはまた、Big Science WorkshopのCarbon Footprint WGの共同議長、WiMLの理事、そして気候危機に機械学習を適用する意義のある活動を促進するClimate Change AI(CCAI)組織の創設メンバーでもあります。 サーシャがメールの炭素フットプリントを計測する方法、地元のスープキッチンが機械学習の力を活用するのをどのように手助けしたか、そして意味と創造性が彼女の仕事を支える方法についてお話しいただきます。 この素晴らしいエピソードを紹介するのをとても楽しみにしています!以下がサーシャ・ルッチョーニとの私の対話です: 注:転記はわかりやすい読み物を提供するためにわずかに修正/書式設定されています。 今日参加していただき、本当にありがとうございます。私たちはあなたが来てくれたことを非常に嬉しく思っています! サーシャ: 私もここにいることを本当に嬉しく思っています。 直接本題に入りますが、あなたのバックグラウンドとHugging Faceへの道を教えていただけますか? サーシャ:…

Q-学習入門 第1部への紹介

ハギングフェイスと一緒に行うディープ強化学習クラスのユニット2、パート1 🤗 ⚠️ この記事の新しいバージョンがこちらで利用可能です 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はディープ強化学習クラスの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご覧ください。 ⚠️ この記事の新しいバージョンがこちらで利用可能です 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はディープ強化学習クラスの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご覧ください。 このクラスの第1章では、強化学習(RL)、RLプロセス、およびRL問題を解決するための異なる手法について学びました。また、最初のランダーエージェントをトレーニングして、月面に正しく着陸させ、Hugging Face Hubにアップロードしました。 今日は、強化学習のメソッドの一つである価値ベースの手法について詳しく掘り下げて、最初のRLアルゴリズムであるQ-Learningを学びます。 また、スクラッチから最初のRLエージェントを実装し、2つの環境でトレーニングします: Frozen-Lake-v1(滑りにくいバージョン):エージェントは凍ったタイル(F)の上を歩き、穴(H)を避けて、開始状態(S)からゴール状態(G)へ移動する必要があります。 自動タクシーは、都市をナビゲートすることを学び、乗客をポイントAからポイントBまで輸送する必要があります。 このユニットは2つのパートに分かれています: 第1部では、価値ベースの手法とモンテカルロ法と時間差学習の違いについて学びます。 そして、第2部では、最初のRLアルゴリズムであるQ-Learningを学び、最初のRLエージェントを実装します。 このユニットは、Deep Q-Learning(ユニット3)で作業できるようになるためには基礎となるものです。これは最初のDeep…

Q-Learningの紹介 パート2/2

ディープ強化学習クラスのユニット2、パート2(Hugging Faceと共に) ⚠️ この記事の新しい更新版はこちらで入手できます 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はディープ強化学習クラスの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご確認ください。 ⚠️ この記事の新しい更新版はこちらで入手できます 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はディープ強化学習クラスの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご確認ください。 このユニットの第1部では、価値ベースの手法とモンテカルロ法と時差学習の違いについて学びました。 したがって、第2部では、Q-Learningを学び、スクラッチから最初のRLエージェントであるQ-Learningエージェントを実装し、2つの環境でトレーニングします: 凍った湖 v1 ❄️:エージェントは凍ったタイル(F)の上を歩き、穴(H)を避けて、開始状態(S)からゴール状態(G)に移動する必要があります。 自律運転タクシー 🚕:エージェントは都市をナビゲートし、乗客を地点Aから地点Bに輸送する必要があります。 このユニットは、ディープQ-Learning(ユニット3)で作業を行うためには基礎となるものです。 では、始めましょう! 🚀 Q-Learningの紹介 Q-Learningとは?…

スペースインベーダーとの深層Q学習

ハギングフェイスとのディープ強化学習クラスのユニット3 ⚠️ この記事の新しい更新版はこちらから利用できます 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はディープ強化学習クラスの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご覧ください。 ⚠️ この記事の新しい更新版はこちらから利用できます 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はディープ強化学習クラスの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご覧ください。 前のユニットでは、最初の強化学習アルゴリズムであるQ-Learningを学び、それをゼロから実装し、FrozenLake-v1 ☃️とTaxi-v3 🚕の2つの環境でトレーニングしました。 このシンプルなアルゴリズムで優れた結果を得ました。ただし、これらの環境は比較的単純であり、状態空間が離散的で小さかったため(FrozenLake-v1では14の異なる状態、Taxi-v3では500の状態)。 しかし、大きな状態空間の環境では、Qテーブルの作成と更新が効率的でなくなる可能性があることを後で見ていきます。 今日は、最初のディープ強化学習エージェントであるDeep Q-Learningを学びます。Qテーブルの代わりに、Deep Q-Learningは、状態を受け取り、その状態に基づいて各アクションのQ値を近似するニューラルネットワークを使用します。 そして、RL-Zooを使用して、Space Invadersやその他のAtari環境をプレイするためにトレーニングします。RL-Zooは、トレーニング、エージェントの評価、ハイパーパラメータの調整、結果のプロット、ビデオの記録など、RLのためのトレーニングフレームワークであるStable-Baselinesを使用しています。 では、始めましょう! 🚀 このユニットを理解するためには、まずQ-Learningを理解する必要があります。…

注釈付き拡散モデル

このブログ記事では、Denoising Diffusion Probabilistic Models(DDPM、拡散モデル、スコアベースの生成モデル、または単にオートエンコーダーとも呼ばれる)について詳しく見ていきます。これらのモデルは、(非)条件付きの画像/音声/ビデオの生成において、驚くべき結果が得られています。具体的な例としては、OpenAIのGLIDEやDALL-E 2、University of HeidelbergのLatent Diffusion、Google BrainのImageGenなどがあります。 この記事では、(Hoら、2020)による元のDDPMの論文を取り上げ、Phil Wangの実装をベースにPyTorchでステップバイステップで実装します。なお、このアイデアは実際には(Sohl-Dicksteinら、2015)で既に導入されていました。ただし、改善が行われるまでには(Stanford大学のSongら、2019)を経て、Google BrainのHoら、2020)が独自にアプローチを改良しました。 拡散モデルにはいくつかの視点がありますので、ここでは離散時間(潜在変数モデル)の視点を採用していますが、他の視点もチェックしてください。 さあ、始めましょう! from IPython.display import Image Image(filename='assets/78_annotated-diffusion/ddpm_paper.png') まず必要なライブラリをインストールしてインポートします(PyTorchがインストールされていることを前提としています)。 !pip install -q -U…

ポリシーグラディエント(Policy Gradient)によるPyTorchの実装

Deep Reinforcement Learning Classのユニット5、Hugging Faceと共に 🤗 ⚠️ この記事の新しい更新版はこちらで利用可能です 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はDeep Reinforcement Learning Classの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご確認ください。 ⚠️ この記事の新しい更新版はこちらで利用可能です 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はDeep Reinforcement Learning Classの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご確認ください。 前のユニットでは、Deep Q-Learningについて学びました。この価値ベースのDeep…

Twitterでの感情分析を始める

センチメント分析は、テキストデータをその極性(ポジティブ、ネガティブ、ニュートラルなど)に基づいて自動的に分類するプロセスです。企業は、ツイートのセンチメント分析を活用して、顧客が自社製品やサービスについてどのように話しているかを把握し、ビジネスの意思決定に洞察を得ること、製品の問題や潜在的なPR危機を早期に特定することができます。 このガイドでは、Twitterでのセンチメント分析を始めるために必要なすべてをカバーします。コーダーと非コーダーの両方向けに、ステップバイステップのプロセスを共有します。コーダーの場合、Inference APIを使用してツイートのセンチメント分析を簡単なコード数行でスケールして行う方法を学びます。コーディング方法を知らない場合でも心配ありません!Zapierを使用してセンチメント分析を行う方法もカバーします。Zapierはツイートを収集し、Inference APIで分析し、最終的に結果をGoogle Sheetsに送信するためのノーコードツールです⚡️ 一緒に読んで興味があるセクションにジャンプしてください🌟: センチメント分析とは何ですか? コーディングを使用したTwitterセンチメント分析の方法は? コーディングを使用せずにTwitterセンチメント分析を行う方法は? 準備ができたら、楽しんでください!🤗 センチメント分析とは何ですか? センチメント分析は、機械学習を使用して人々が特定のトピックについてどのように話しているかを自動的に識別する方法です。センチメント分析の最も一般的な用途は、テキストデータの極性(つまり、ツイートや製品レビュー、サポートチケットが何かについてポジティブ、ネガティブ、またはニュートラルに話しているかを自動的に識別すること)の検出です。 例として、@Salesforceをメンションしたいくつかのツイートをチェックして、センチメント分析モデルによってどのようにタグ付けされるかを確認してみましょう: “The more I use @salesforce the more I dislike it. It’s…

アドバンテージアクタークリティック(A2C)

ハギングフェイスとのDeep Reinforcement Learningクラスのユニット7 ⚠️ この記事の新しい更新版はこちらでご覧いただけます 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はDeep Reinforcement Learningクラスの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご確認ください。 ⚠️ この記事の新しい更新版はこちらでご覧いただけます 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はDeep Reinforcement Learningクラスの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご確認ください。 ユニット5では、最初のPolicy-BasedアルゴリズムであるReinforceについて学びました。Policy-Basedメソッドでは、価値関数を使用せずにポリシーを直接最適化することを目指します。具体的には、ReinforceはPolicy-Gradientメソッドと呼ばれるPolicy-Basedメソッドのサブクラスの一部であり、Gradient Ascentを使用して最適なポリシーの重みを推定することでポリシーを直接最適化します。 Reinforceはうまく機能することを見ました。ただし、リターンを推定するためにモンテカルロサンプリングを使用するため、ポリシーグラデーションの推定にはかなりの分散があります。 ポリシーグラデーションの推定はリターンの最も急速な増加の方向です。つまり、良いリターンにつながるアクションのポリシーウェイトを更新する方法です。モンテカルロの分散は、このユニットでさらに詳しく学びますが、分散を緩和するために多くのサンプルが必要なため、トレーニングが遅くなります。 今日はActor-Criticメソッドを学びます。これはバリューベースとポリシーベースのメソッドを組み合わせたハイブリッドアーキテクチャで、トレーニングを安定化させるためのものです: エージェントの行動方法を制御するアクター(ポリシーベースのメソッド) 取られたアクションの良さを測る評価者(バリューベースのメソッド)…

🤗 Datasetsでの新しいオーディオとビジョンのドキュメンテーションを紹介します

オープンで再現可能なデータセットは、良い機械学習を進めるために不可欠です。同時に、データセットは大規模な言語モデルの燃料として非常に大きく成長しています。2020年、Hugging Faceは🤗 Datasetsというライブラリを立ち上げ、以下のために専用のライブラリを提供しています: 1行のコードで標準化されたデータセットにアクセスを提供すること。 大規模なデータセットを迅速かつ効率的に処理するためのツールを提供すること。 コミュニティのおかげで、私たちは多言語および方言のNLPデータセットを数百追加しました! 🤗 ❤️ しかし、テキストデータセットは始まりに過ぎません。データは🎵 音声、📸 画像、音声とテキストの組み合わせ、画像とテキストなど、より豊かな形式で表現されています。これらのデータセットでトレーニングされたモデルは、画像の内容を説明したり、画像に関する質問に答えたりするなど、素晴らしいアプリケーションを可能にします。 🤗 Datasetsチームは、これらのデータセットタイプとの作業をできるだけ簡単にするためのツールと機能を開発してきました。音声および画像データセットの読み込みと処理についての詳細を学ぶための新しいドキュメントも追加しました。 クイックスタート クイックスタートは、ライブラリの機能についての要点を把握するために新しいユーザーが最初に訪れる場所の一つです。そのため、クイックスタートを更新して、🤗 Datasetsを使用して音声および画像データセットを処理する方法を含めました。作業したいデータセットの形態を選択し、データセットを読み込んで処理し、PyTorchまたはTensorFlowでトレーニングに使用する準備ができるまでのエンドツーエンドの例を参照してください。 クイックスタートには、新しいto_tf_dataset関数も追加されています。この関数は、データセットをtf.data.Datasetに変換するために必要なコードを自動的に記述します。これにより、データセットからシャッフルしてバッチを読み込むためのコードを書く必要がなくなります。データセットをtf.data.Datasetに変換した後は、通常のTensorFlowまたはKerasのメソッドでモデルをトレーニングすることができます。 今日はクイックスタートをチェックして、さまざまなデータセット形態での作業方法を学び、新しいto_tf_dataset関数を試してみましょう! データセットの冒険を選ぶ! 専用ガイド 各データセット形態には、それらを読み込んで処理する方法に固有のニュアンスがあります。例えば、音声データセットを読み込む場合、音声信号はAudio機能によって自動的にデコードおよびリサンプリングされます。これはテキストデータセットを読み込む場合とはかなり異なります! モダリティ固有のドキュメントをより見つけやすくするために、各モダリティごとに専用のセクションが新たに設けられ、各モダリティの読み込みと処理方法を示すガイドが提供されています。データセット形態での作業に関する特定の情報を探している場合は、まずこれらの専用セクションをご覧ください。一方で、特定ではなく広く使用できる関数は一般的な使用方法のセクションに記述されています。このような方法でドキュメントを再編成することで、将来サポートする予定の他のデータセット形式にもよりスケーラブルに対応できるようになります。 ガイドは、🤗 Datasetsの最も重要な側面をカバーするセクションに整理されています。…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us