Learn more about Search Results H3 - Page 196

ジョン・イサザ弁護士、FAI氏によるAIとChatGPTの法的な土壌を航行する方法

私たちは、Rimon LawのパートナーであるJohn Isaza, Esq., FAIに感謝しています彼は、法的な景観の変化、プライバシー保護とイノベーションの微妙なバランス、そしてAIツールを統合する際に生じる独特の法的な意義など、多岐にわたる側面で自身の物語と貴重な洞察を共有してくれましたJohnは、AIに関連する課題や考慮事項について貴重な観点を提供しています...John Isaza, Esq., FAI がAIとChatGPTの法的景観を航海するための記事を読む»

アルトコインへの投資:暗号市場の包括的ガイド

アルトコインとは、ビットコインの後に登場した他の暗号通貨のことですこれらのデジタル通貨は、分散型ブロックチェーン技術を介して運営され、先駆的な暗号通貨であるビットコインとは異なる用途を提供しています 「アルトコイン」という用語は、暗号空間で数年間使用されており、ビットコインを除く多数の暗号通貨を指します… アルトコインへの投資:暗号市場の包括的ガイド 詳細はこちら»

MatplotlibのチャートをHTMLページに埋め込む3つの方法

Pythonには、データ可視化を含むさまざまな操作を実行するための多くのライブラリが用意されていますただし、Matplotlibを使用して作成したチャートをHTMLページに統合することは複雑な場合があります最も簡単な方法は…

将来のPythonバージョン(3.12など)に一般のユーザーに先駆けてアクセスする方法

Python 3.12などの将来のバージョンを群衆より先にインストールしてテストする方法についてのチュートリアルで、新しい機能を体験して競争上の優位性を獲得する方法

脅威ハンティングの解明:サイバーセキュリティの革新的な戦略

この記事は脅威ハンティングの世界に深く入り込み、2023年にサイバーセキュリティの防御力を強化する最新の方法を紹介しています

マルチヘッドアテンションを使用した注意機構の理解

はじめに Transformerモデルについて詳しく学ぶ良い方法は、アテンションメカニズムについて学ぶことです。特に他のタイプのアテンションメカニズムを学ぶ前に、マルチヘッドアテンションについて学ぶことは良い選択です。なぜなら、この概念は少し理解しやすい傾向があるためです。 アテンションメカニズムは、通常の深層学習モデルに追加できるニューラルネットワークレイヤーと見なすことができます。これにより、重要な部分に割り当てられた重みを使用して、入力の特定の部分に焦点を当てるモデルを作成することができます。ここでは、マルチヘッドアテンションメカニズムを使用して、アテンションメカニズムについて詳しく見ていきます。 学習目標 アテンションメカニズムの概念 マルチヘッドアテンションについて Transformerのマルチヘッドアテンションのアーキテクチャ 他のタイプのアテンションメカニズムの概要 この記事は、データサイエンスブログマラソンの一環として公開されました。 アテンションメカニズムの理解 まず、この概念を人間の心理学から見てみましょう。心理学では、注意は他の刺激の影響を除外して、イベントに意識を集中することです。つまり、他の注意を引くものがある場合でも、私たちは選択したものに焦点を合わせます。注意は全体の一部に集中します。 これがTransformerで使用される概念です。彼らは入力のターゲット部分に焦点を当て、残りの部分を無視することができます。これにより、非常に効果的な方法で動作することができます。 マルチヘッドアテンションとは? マルチヘッドアテンションは、Transformerにおいて中心的なメカニズムであり、ResNet50アーキテクチャにおけるskip-joiningに相当します。場合によっては、アテンドするべきシーケンスの複数の他の点があります。全体の平均を見つける方法では、重みを分散させて多様な値を重みとして与えることができません。これにより、複数のアテンションメカニズムを個別に作成するアイデアが生まれ、複数のアテンションメカニズムが生じます。実装では、1つの機能に複数の異なるクエリキー値トリプレットが表示されます。 出典:Pngwing.com 計算は、アテンションモジュールが何度も反復し、アテンションヘッドとして知られる並列レイヤーに組織化される方法で実行されます。各別のヘッドは、入力シーケンスと関連する出力シーケンスの要素を独立して処理します。各ヘッドからの累積スコアは、すべての入力シーケンスの詳細を組み合わせた最終的なアテンションスコアを得るために組み合わされます。 数式表現 具体的には、キーマトリックスとバリューマトリックスがある場合、値をℎサブクエリ、サブキー、サブバリューに変換し、アテンションを独立して通過させることができます。連結すると、ヘッドが得られ、最終的な重み行列でそれらを組み合わせます。 学習可能なパラメータは、アテンションに割り当てられた値であり、各パラメータはマルチヘッドアテンションレイヤーと呼ばれます。以下の図はこのプロセスを示しています。 これらの変数を簡単に見てみましょう。Xの値は、単語埋め込みの行列の連結です。 行列の説明 クエリ:シーケンスのターゲットについての洞察を提供する特徴ベクトルです。クエリは、何がアテンションを必要としているかをシーケンスに要求します。 キー:要素に含まれるものを説明する特徴ベクトルです。クエリによってアテンションが与えられ、要素のアイデンティティを提供します。 値:…

Plotlyの3Dサーフェスプロットを使用して、地質表面を視覚化する

地球科学の分野においては、地下に存在する地質層の完全な理解が不可欠です層の正確な位置と形状を知ることで、...

新たな能力が明らかに:GPT-4のような成熟したAIのみが自己改善できるのか?言語モデルの自律的成長の影響を探る

研究者たちは、AlphaGo Zeroと同様に、明確に定義されたルールで競争的なゲームに反復的に参加することによってAIエージェントが自己発展する場合、多くの大規模言語モデル(LLM)が人間の関与がほとんどない交渉ゲームでお互いを高め合う可能性があるかどうかを調査しています。この研究の結果は、遠い影響を与えるでしょう。エージェントが独立に進歩できる場合、少数の人間の注釈で強力なエージェントを構築することができるため、今日のデータに飢えたLLMトレーニングに対して対照的です。それはまた、人間の監視がほとんどない強力なエージェントを示唆しており、問題があります。この研究では、エジンバラ大学とAIアレン研究所の研究者が、顧客と売り手の2つの言語モデルを招待して購入の交渉を行うようにしています。 図1:交渉ゲームの設定。彼らは2つのLLMエージェントを招待して、値切りのゲームで売り手と買い手をプレイさせます。彼らの目標は、より高い値段で製品を販売または購入することです。彼らは第三のLLMであるAI批評家に、ラウンド後に向上させたいプレイヤーを指定してもらいます。その後、批判に基づいて交渉戦術を調整するようにプレイヤーに促します。これを数ラウンド繰り返すことで、モデルがどんどん上達するかどうかを確認します。 顧客は製品の価格を下げたいと思っていますが、売り手はより高い価格で販売するように求められています(図1)。彼らは第三の言語モデルに批評家の役割を担ってもらい、取引が成立した後にプレイヤーにコメントを提供させます。次に、批評家LLMからのAI入力を利用して、再度ゲームをプレイし、プレイヤーにアプローチを改善するように促します。彼らは交渉ゲームを選んだ理由は、明確に定義されたルールと、戦術的な交渉のための特定の数量化目標(より低い/高い契約価格)があるためです。ゲームは最初は単純に見えますが、モデルは次の能力を持っている必要があります。 交渉ゲームのテキストルールを明確に理解し、厳密に遵守すること。 批評家LLMによって提供されるテキストフィードバックに対応し、反復的に改善すること。 長期的にストラテジーとフィードバックを反映し、複数のラウンドで改善すること。 彼らの実験では、モデルget-3.5-turbo、get-4、およびClaude-v1.3のみが交渉ルールと戦略を理解し、AIの指示に適切に合致している必要があるという要件を満たしています。その結果、彼らが考慮したモデルすべてがこれらの能力を示さなかったことが示されています(図2)。初めに、彼らはボードゲームやテキストベースのロールプレイングゲームなど、より複雑なテキストゲームもテストしましたが、エージェントがルールを理解して遵守することがより困難であることが判明しました。彼らの方法はICL-AIF(AIフィードバックからのコンテキスト学習)として知られています。 図2:私たちのゲームで必要な能力に基づいて、モデルは複数の階層に分けられます(C2-交渉、C3-AIフィードバック、C4-継続的な改善)。私たちの研究は、gpt-4やclaude-v1.3などの堅牢で適切に合致したモデルだけが反復的なAI入力から利益を得て、常に発展することができることを明らかにしています。 彼らは、AI批評家のコメントと前回の対話履歴ラウンドをコンテキストに応じたデモンストレーションとして利用しています。これにより、プレイヤーの前回の実際の開発と批評家の変更アイデアが、次のラウンドの交渉のためのフューショットキューに変換されます。2つの理由から、彼らはコンテキストでの学習を使用しています:(1)強化学習を用いた大規模な言語モデルの微調整は、高額であるため、(2)コンテキストでの学習は、勾配降下に密接に関連していることが最近示されたため、モデルの微調整を行う場合には、彼らが引き出す結論がかなり一般的になることが期待されます(資源が許される場合)。 人間からのフィードバックによる強化学習(RLHF)の報酬は通常スカラーですが、ICL-AIFでは、フィードバックが自然言語で提供されます。これは、2つのアプローチの注目すべき違いです。各ラウンド後に人間の相互作用に依存する代わりに、よりスケーラブルでモデルの進歩に役立つAIのフィードバックを検討しています。 異なる責任を負うときにフィードバックを与えられた場合、モデルは異なる反応を示します。バイヤー役のモデルを改善することは、ベンダー役のモデルよりも難しい場合があります。過去の知識とオンライン反復的なAIフィードバックを利用して、get-4のような強力なエージェントが常に意味のある開発を続けることができるとしても、何かをより高く売る(またはより少ないお金で何かを購入する)ことは、全く取引が成立しないリスクがあります。彼らはまた、モデルがより簡潔であるがより綿密(そして最終的にはより成功する)交渉に従事できることを証明しています。全体的に、彼らは自分たちの仕事がAIフィードバックのゲーム環境での言語モデルの交渉を向上させる重要な一歩になると期待しています。コードはGitHubで利用可能です。

データアナリストの仕事内容はどのように見えますか?

はじめに グローバルなデータ分析市場は、2026年までに年率28.9%で132,903百万ドルに達すると予想されています。データは世界中の企業の強力な支援力となっていますが、データアナリストとしてのキャリアをスタートするのは十分に正当なことです。データアナリストの仕事の説明には、データの収集、クリーニング、調整、翻訳に熟練が求められます。この分野で前進する計画がある場合は、データアナリストの役割と責任、および求職者が職に就くために期待される資格について説明します。 データアナリストとは何ですか? データアナリストは、大量のデータセットを収集、解釈、分析して有益な洞察とトレンドを明らかにします。彼らは統計的および分析的技術を使用してデータを調べ、パターンを特定し、意味のある結論を導き出します。データアナリストは、ビジネスや組織が情報を得て効果的な戦略を開発するのを支援することが重要です。彼らは、売上高、顧客デモグラフィック、ウェブサイトのトラフィック、ソーシャルメディアのエンゲージメントなど、多様なデータソースであるスプレッドシート、統計ソフトウェア、プログラミング言語などのツールを使用します。データ分析、可視化、レポート作成の専門知識を持つことで、データアナリストはビジネスのパフォーマンスを向上させ、データに基づく意思決定を促進します。 データアナリストの主な責任 重要なデータアナリストの責任には、アクション可能な洞察を生成し、意思決定プロセスを促進するためにデータを収集、分析、解釈することが含まれます。現在、データアナリストの仕事の説明の職務は、業界、会社、役割などの特定に基づいて異なる場合があります。 ここでは、異なる文脈で役立つ5つのデータアナリストの役割と責任を紹介します。 1. データの収集と分析 データアナリストの役割には、データベース、スプレッドシート、APIなどからデータを収集することが含まれます。アナリストは、データの正確性と一貫性を確保することが期待されています。さらに、データを分析しやすくするために変換することも含まれる場合があります。 2. データのクリーニングと前処理 分析を行う前に、データアナリストはしばしば生データをクリーニングして前処理する必要があります。これにより、分析に適したデータであることが確認されます。欠落しているデータの処理、データの検証の実行、外れ値の処理など、データクリーニングに使用される技術の熟練度を確保することも重要です。 3. データの探索と可視化 データアナリストの仕事の説明には、統計的技術とデータ可視化ツールの熟練度が必須とされることがよくあります。データの探索と可視化を行うことで、データ内のパターンを特定し、意味のある洞察を導き出すことが不可欠です。したがって、データアナリストは、Excel、SQL、Python、またはRなどのプログラミング言語などのツールを使いこなす必要があります。 4. パターン、トレンド、および洞察の特定 データアナリストの仕事の説明には、数値を精査し、パターン、トレンド、相関関係を探すというタスクが、データアナリストの主な責任として強調されています。統計的手法や分析技術を用いて、専門家は価値のある洞察を抽出するための解釈技術に精通している必要があります。 5. レポートとプレゼンテーションの作成 データアナリストの役割は、データドリブンの洞察や推奨事項を提供することで問題解決を支援することです。データアナリストは、意思決定者やステークホルダーと緊密に協力して、要件を理解し、データ分析に基づいてよりよい意思決定を行うのを支援します。彼らは、実行可能な推奨事項と洞察を提供して、ビジネス戦略を推進し、パフォーマンスを向上させます。 データアナリストのスキル 企業固有のデータアナリストの仕事の説明に基づいて、必要なスキルと資格のリストを作成することが理想的ですが、データアナリストとして競争に勝つためには、技術的な専門知識、分析思考力、強力なコミュニケーションスキルを組み合わせる必要があります。…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us