Learn more about Search Results HTML - Page 18
- You may be interested
- アラウカナXAI:医療における意思決定木を...
- 「最適効率のための証明済み戦略:Azure V...
- 開発者の生産性向上:DeloitteのAmazon Sa...
- ジェネラティブAIをマスターするための5つ...
- 「アトムコンピューティング、1000以上の...
- 「TR0Nに会ってください:事前学習済み生...
- 非ユークリッド空間における機械学習
- 「アルトマンのスティーブ・ジョブズモー...
- デジタルアート保護の革命:不正なAIウェ...
- 「ウェアラブルデータによるコロナ感染予測」
- AIがYouTubeの多言語吹替を開始します
- 「ブラックボックスの解除:ディープニュ...
- データサイエンスの戦略の鬼才になる:AI...
- コンテナの力を解放する:あらゆる開発ニ...
- Imagen EditorとEditBench:テキストによ...
「Pythonを使用したアンダーサンプリング手法」
この記事では、データの不均衡に対処するためのアンダーサンプリングデータ前処理技術について議論しています
「エッセンシャルAI、シリーズAラウンドで5650万ドル調達」
スタートアップ企業のEssential AIは、56.5百万ドルのシリーズAを調達し、エンタープライズブレインの構築を目指していますGoogleのベテランであるAshish VaswaniとNiki Parmarによって設立されたこのスタートアップは、人間と機械の間に架け橋を築くことを約束するAI製品のフルスタックに取り組んでいますYahoo!によると...
「EUの新しいAI法案の主なポイント、初の重要なAI規制」
「欧州連合による人工知能の規制イニシアチブは、テクノロジーの法的・倫理的なガバナンスにおいて重要な時点を迎えています最近のAI法案により、EUはAIシステムによって生じる複雑さや課題に対処するため、主要な世界的な組織の中で最初の一歩を踏み出しましたこの法案は、単なる立法上のマイルストーンではありません[...]」
『UC BerkeleyがAIフィードバックから強化学習を使って訓練されたオープンなLLMを発表』
新しいレポートでは、UCバークレーの研究者がReinforcement Learning from AI Feedback(RLAIF)を使って作成された革命的な大規模言語モデルであるStarling-7Bを紹介しています研究者たちは、このモデルが最先端の技術と手法を取り入れ、自然言語処理の領域を再定義する助けになることを期待しています研究者たちは、...
確定論的 vs 確率的 – 機械学習の基礎
確定論的モデルと確率モデルは、機械学習やリスク評価を含む様々な分野での手法です。これらのモデルの違いを理解することは、情報を基にした意思決定や予測を行うために重要です。この記事では、確定論的モデルと確率モデルの利点と欠点、それらの応用、および機械学習やリスク評価への影響について探っていきます。 確定論的モデルと確率モデルの理解 確定論的モデルは正確な入力に基づき、同じ入力に対して同じ出力を生成します。これらのモデルは、現在の状態に基づいて将来を確実に予測できると仮定しています。 一方、確率モデルはモデリングプロセスにランダム性と不確実性を取り込みます。さまざまな結果を提供する異なる結果の確率を考慮します。 確定論的モデルの利点と欠点 利点: 確定論的モデルは入力と出力の間に透明な因果関係を確立し、より簡単な解釈を可能にします。 確定論的モデルは計算効率が高く、確率モデルよりも少ない処理能力を必要とします。 これらのモデルは正確な予測に対して少ないデータを必要とするため、データの入手が制限されている状況に適しています。 欠点: 確定論的モデルは全ての変数を把握し正確に測定できるという条件に基づいていますが、これは現実の複雑さと一致しない場合があります。 確定論的モデルは、多くの現実世界の状況に固有の不確実性やランダム性を考慮していないため、予測の精度に問題が生じる可能性があります。 確率モデルの利点と欠点 利点: 確率モデルは不確実性やランダム性を考慮するため、不確実な将来が予想されるシナリオに適しています。 異なるシナリオの可能性を評価し、情報を持った選択をするために、さまざまな結果を提供します。 欠点: 確率モデルは確定論的モデルよりも多くのデータと計算資源を要求するため、リソースが制限された状況での制約となる可能性があります。 確率モデルの出力は確率的な性質を持つため、解釈がより複雑で、確率と統計の概念を微妙に理解する必要があります。 確定論的モデルと確率モデルの違い 定義と概念 確定論的モデルは固定された入力に基づき、毎回同じ出力を生成します。これらのモデルは、現在の状態に基づいて将来を正確に決定できると仮定しています。一方、確率モデルはランダム性と不確実性を取り込んでいます。確率的な入力を組み込み、さまざまな結果の範囲を提供し、異なる結果の可能性を評価できます。 ユースケースと応用 人々は、確定論的モデルを明確で予測可能な入力と出力のシナリオで一般的に使用します。例えば、エンジニアや物理学者は、既知のパラメータを持つシステムの振る舞いを分析するために、確定論的モデルを使用します。…
ギガGPTに会ってください:CerebrasのnanoGPTの実装、Andrei Karpathyの効率的なコードでGPT-3のサイズのAIモデルを訓練するためにわずか565行のコード
大規模なトランスフォーマーモデルのトレーニングには、特に数十億または数兆のパラメータを持つモデルを目指す場合、重要な課題があります。主な難関は、複数のGPUに効率的にワークロードを分散させながらメモリ制限を緩和することにあります。現在の状況では、Megatron、DeepSpeed、NeoX、Fairscale、Mosaic Foundryなど、複雑な大規模言語モデル(LLM)スケーリングフレームワークに依存しています。ただし、これらのフレームワークは、モデルのサイズが大きくなるにつれてかなりの複雑さを導入します。今回の研究では、CerebrasのgigaGPTを、この課題に対する画期的な解決策として紹介します。これにより、複雑な並列化技術の必要性を排除した代替手法を提供します。 大規模なトランスフォーマーモデルのトレーニングには、MegatronやDeepSpeedなどのフレームワークのように、複数のGPU上での分散コンピューティングに依存している方法が主流です。ただし、数十億のパラメータを超えるモデルの場合、これらの方法ではメモリ制約に遭遇し、複雑な解決策が必要です。これに対して、CerebrasのgigaGPTはパラダイムシフトをもたらします。565行という非常にコンパクトなコードベースを備えたnanoGPTを実装しています。この実装は、追加のコードやサードパーティのフレームワークに依存することなく、1000億を超えるパラメータを持つモデルをトレーニングできます。gigaGPTはCerebrasのハードウェアの広範なメモリと計算能力を活用します。他のフレームワークとは異なり、余分な複雑さを導入せずにシームレスに動作し、簡潔で独自のコードベースとGPT-3のサイズのモデルのトレーニング能力を提供します。 gigaGPTは、基本的なGPT-2のアーキテクチャを実装しており、nanoGPTの原則に密接に沿っています。学習された位置の埋め込み、標準のアテンション、モデル全体にわたるバイアス、およびnanoGPTの構造に対する選択肢を採用しています。特筆すべきは、この実装が特定のモデルサイズに限定されないことです。gigaGPTは111M、13B、70B、および175Bパラメータを持つモデルのトレーニングでその柔軟性を検証しています。 OpenWebTextデータセットとnanoGPTのGPT-2トークナイザーと前処理コードを使用してテストを行います。gigaGPTのパフォーマンスは、専用の並列化技術を必要とせずに数百億のパラメータから数千億のパラメータまでスケーリングする能力によって強調されています。565行のコードがリポジトリ全体をカバーしており、その簡単な構造と効率性を示しています。 実装の成功は、特定のモデル構成でもさらに示されます。たとえば、111M構成はCerebras-GPTと一致し、モデルの次元、学習率、バッチサイズ、トレーニングスケジュールが同じです。同様に、13B構成もサイズにおいて対応するCerebras-GPT構成に近く、70B構成はLlama-2 70Bからインスピレーションを受けています。70Bモデルは安定性とパフォーマンスを維持し、スケーラビリティを示しています。70Bモデルを検証した後、研究者たちはGPT-3の論文に基づいて175Bモデルを構成することで境界を em emました。初期の結果は、メモリの問題なく拡大スケールを処理できるモデルの能力を示しており、gigaGPTは1兆を超えるパラメータを持つモデルにもスケーリングできる可能性を示唆しています。 結論として、gigaGPTは大規模なトランスフォーマーモデルのトレーニングの課題に対する画期的な解決策として浮かび上がっています。研究チームの実装は、簡潔で使いやすいコードベースを提供するだけでなく、GPT-3のサイズのモデルのトレーニングも可能にします。Cerebrasのハードウェアを利用した、広範なメモリと計算能力による利点は、大規模なAIモデルのトレーニングをよりアクセス可能、スケーラブル、効率的にする大きな進歩です。この革新的なアプローチは、巨大な言語モデルのトレーニングの複雑さに取り組もうとする機械学習の研究者や実践者にとって有望な道を開くものと言えます。 Introducing gigaGPT: our implementation of @karpathy’s nanoGPT that trains GPT-3 sized models in just…
KubernetesでのGenAIアプリケーションの展開:ステップバイステップガイド
このガイドは、高い可用性のためにKubernetes上でGenAIアプリケーションを展開するための包括的で詳細な手順を提供します
グーグルはコントロールを失っている – CTR操作から大量のAIコンテンツまで
人工知能(AI)の時代は私たちに迫っており、私たちの日常生活を形作り続けていますAIによるコンテンツの人気が高まる中、スマートなアルゴリズムが新しい記事から製品の説明まで作成を支援することができるようになりました最大の検索エンジンであるGoogleも、この革命から免れませんもし... Googleの制御を失う - CTR操作から大量のAIコンテンツへ続く記事を読む»
『GPT-4を使用したパーソナライズされたAIトレーディングコンサルタントの構築』
はじめに 近年、人工知能(AI)を株式取引に統合することで、投資家の意思決定に革命が起きています。GPT-3やGPT-4などの大規模言語モデル(LLMs)の登場により、複雑な市場分析や洞察が個々の投資家やトレーダーによりアクセスしやすくなりました。この革新的なテクノロジーは、膨大なデータと高度なアルゴリズムを活用して、かつて機関投資家の専売特許であった市場の理解を提供するものです。この記事では、リスク許容度、投資期間、予算、および期待利益に基づいた個別の投資プロファイルに合わせた、パーソナライズされたAI取引コンサルタントの開発に焦点を当てており、個人投資家に戦略的な投資アドバイスを提供することで彼らを強化しています。 GPT-3やGPT-4といった大規模言語モデル(LLMs)によって動かされる株式取引コンサルタントは、金融アドバイザリーサービスに革命をもたらしました。これらのコンサルタントは、AIを活用して過去の株式データや最新の金融ニュースを分析し、投資家の独自のポートフォリオと金融目標に合ったパーソナライズされた投資アドバイスを提供できます。本記事では、市場の動向やトレンドを予測するためのコンサルタントの構築に挑戦し、個別のリスク許容度、投資期間、投資可能な資金、および期待利益に基づいたカスタマイズされた推奨事項を提供します。 学習目標 本記事の終わりまでに、読者は以下のことができるようになります: AIやGPT-3などのLLMsが株式市場分析や取引をどのように変革するかについて洞察を得る。 AI主導のツールが個別のリスクプロファイルと投資目標に基づいたパーソナライズされた投資アドバイスを提供する能力を認識する。 AIが過去とリアルタイムのデータを活用して投資戦略と予測を立案する方法を学ぶ。 AIを用いた株式取引が、小売投資家を含むより広範なユーザーに洗練された投資戦略を提供する方法を理解する。 パーソナル投資や株式取引での情報を活用した意思決定のためにAI主導のツールを活用する方法を発見する。 LLMsを活用した株式取引コンサルタントのコンセプト この記事はData Science Blogathonの一部として公開されました。 データセットについて このプロジェクトのためのデータセットは、ニューヨーク証券取引所からのものであり、Kaggleで利用可能です。このデータセットには、7年間にわたる4つのCSVファイルが含まれています。重要な財務尺度を提供する「fundamentals.csv」、株式分割に関する過去の株価と調整を提供する「prices.csv」と「prices-split-adjusted.csv」、セクター分類や本社などの追加の企業情報を提供する「securities.csv」が含まれています。これらのファイルは、企業のパフォーマンスと株式市場の動向を包括的に把握するためのものです。 データの準備 GPT-4のような大規模言語モデル(LLMs)を使用した株式取引コンサルタントの実装は、重要なデータの準備から始まります。このプロセスには、データのクリーニング、正規化、カテゴリ化といった重要なタスクが含まれ、提供されたデータセット「fundamentals.csv」「prices.csv」「prices-split-adjusted.csv」「securities.csv」を使用します。 ステップ1:データのクリーニング 「Fundamental Dataset」では、「For Year」「Earnings Per Share」「Estimated…
「vLLMの解読:言語モデル推論をスーパーチャージする戦略」
イントロダクション 大規模言語モデル(LLM)は、コンピュータとの対話方法を革新しました。しかし、これらのモデルを本番環境に展開することは、メモリ消費量と計算コストの高さのために課題となることがあります。高速なLLM推論とサービングのためのオープンソースライブラリであるvLLMは、PagedAttentionと呼ばれる新しいアテンションアルゴリズムと連携して、これらの課題に対処します。このアルゴリズムは効果的にアテンションのキーと値を管理し、従来のLLMサービング方法よりも高いスループットと低いメモリ使用量を実現します。 学習目標 この記事では、以下の内容について学びます: LLM推論の課題と従来のアプローチの制約を理解する。 vLLMとは何か、そしてどのように機能するのか理解する。 vLLMを使用したLLM推論のメリット。 vLLMのPagedAttentionアルゴリズムがこれらの課題を克服する方法を発見する。 vLLMを既存のワークフローに統合する方法を知る。 この記事はData Science Blogathonの一環として公開されました。 LLM推論の課題 LLMは、テキスト生成、要約、言語翻訳などのタスクでその価値を示しています。しかし、従来のLLM推論手法でこれらのLLMを展開することはいくつかの制約を抱えています: 大きなメモリフットプリント:LLMは、パラメータや中間アクティベーション(特にアテンションレイヤーからのキーと値のパラメータ)を保存するために大量のメモリを必要とし、リソースに制約のある環境での展開が困難です。 スループットの限定:従来の実装では、大量の同時推論リクエストを処理するのが難しく、スケーラビリティと応答性が低下します。これは、大規模言語モデルが本番サーバーで実行され、GPUとの効果的な連携が行えない影響を受けます。 計算コスト:LLM推論における行列計算の負荷は、特に大規模モデルでは高額になることがあります。高いメモリ使用量と低いスループットに加えて、これによりさらにコストがかかります。 vLLMとは何か vLLMは高スループットかつメモリ効率の良いLLMサービングエンジンです。これは、PagedAttentionと呼ばれる新しいアテンションアルゴリズムと連携して、アテンションのキーと値をより小さな管理しやすいチャンクに分割することで効果的に管理します。このアプローチにより、vLLMのメモリフットプリントが削減され、従来のLLMサービング手法と比べて大きなスループットを実現することができます。テストでは、vLLMは従来のHuggingFaceサービングよりも24倍、HuggingFaceテキスト生成インファレンス(TGI)よりも2〜5倍高速になりました。また、連続的なバッチ処理とCUDAカーネルの最適化により、インファレンスプロセスをさらに洗練させています。 vLLMのメリット vLLMは従来のLLMサービング手法よりもいくつかの利点を提供します: 高いスループット:vLLMは、最も人気のあるLLMライブラリであるHuggingFace Transformersよりも最大24倍の高いスループットを実現できます。これにより、より少ないリソースでより多くのユーザーに対応することができます。 低いメモリ使用量:vLLMは、従来のLLMサービング手法と比べて非常に少ないメモリを必要とするため、ソフトハードウェアのプラットフォームに展開する準備ができています。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.