Learn more about Search Results A - Page 18
- You may be interested
- OpenAIを使用してカスタムチャットボット...
- 「LLMsとHugging Faceを使用して独自の翻...
- HTMLの要約:IIoTデータのプライバシー保...
- ベントMLを使用したHugging Faceモデルの...
- 「ベルカーブの向こう側:t-分布の紹介」
- 「3歳のロボットの子育て」
- AgentBenchをご紹介します:さまざまな状...
- 「PythonにおけるSklearn、Pandas、および...
- 「Würstchenをご紹介します:高速かつ効率...
- このAI論文は、高度な潜在的一致モデルとL...
- データ駆動型の世界で理解すべき重要な統...
- チャットボットに関する不正行為の懸念は...
- コンピュータービジョンによる車両損傷検...
- 「あなたのデータプロジェクトで行き詰ま...
- 期待されるキャリブレーションエラー(ECE...
ミストラルAIは、MoE 8x7Bリリースによる言語モデルの画期的な進歩を発表します
パリに拠点を置くスタートアップMistral AIは、MoE 8x7Bという言語モデルを発表しました。Mistral LLMは、各々が70億のパラメータを持つ8人の専門家からなる、サイズダウンされたGPT-4としてしばしば比較されます。特筆すべきは、各トークンの推論には8人の専門家のうち2人のみが使用され、効率的で効果的な処理手法を示していることです。 このモデルは、混合専門家(MoE)アーキテクチャを活用して、素晴らしいパフォーマンスと効率性を実現しています。これにより、従来のモデルと比べてより効率的で最適なパフォーマンスが得られます。研究者たちは、MoE 8x7Bが、テキスト生成、理解、コーディングやSEO最適化など高度な処理を必要とするタスクを含むさまざまな側面で、Llama2-70BやQwen-72Bなどの以前のモデルよりも優れたパフォーマンスを発揮することを強調しています。 これにより、AIコミュニティの間で多くの話題を呼んでいます。著名なAIコンサルタントであり、Machine & Deep Learning Israelコミュニティの創設者である人物は、Mistralがこのような発表を行っていることを称え、これを業界内で特徴的なものと評価しています。オープンソースAIの提唱者であるジェイ・スキャンブラー氏は、このリリースの異例性について言及しました。彼は、これがMistralによる故意の戦略であり、AIコミュニティからの注目と興味を引くためのものである可能性があると述べ、重要な話題を成功裏に生み出したと指摘しています。 MistralのAI分野における旅は、欧州史上最大と報じられている1億1800万ドルのシードラウンドという記録的な一歩で始まりました。同社は、9月には最初の大規模な言語AIモデルであるMistral 7Bのローンチにより、さらなる認知度を得ました。 MoE 8x7Bモデルは、各々が70億のパラメータを持つ8人の専門家を搭載しており、GPT-4の16人の専門家と1人あたり1660億のパラメータからの削減を表しています。推定1.8兆パラメータのGPT-4に比べ、推定総モデルサイズは420億パラメータです。また、MoE 8x7Bは言語問題に対するより深い理解を持っており、機械翻訳やチャットボットのインタラクション、情報検索の向上につながっています。 MoEアーキテクチャは、より効率的なリソース配分を可能にし、処理時間を短縮し、計算コストを削減します。Mistral AIのMoE 8x7Bは、言語モデルの開発において重要な進展を示すものです。その優れたパフォーマンス、効率性、柔軟性は、さまざまな産業やアプリケーションにおいて莫大なポテンシャルを持っています。AIが進化し続ける中、MoE 8x7Bのようなモデルは、デジタル専門知識やコンテンツ戦略を向上させたい企業や開発者にとって不可欠なツールとなることが予想されています。 結論として、Mistral AIのMoE 8x7Bのリリースは、技術的な洗練と非伝統的なマーケティング戦略を組み合わせた画期的な言語モデルを導入しました。研究者たちは、AIコミュニティがMistralのアーキテクチャを詳しく調査・評価していく中で、この先進的な言語モデルの効果と利用方法を楽しみにしています。MoE 8x7Bの機能は、教育、医療、科学的発見など、さまざまな分野における研究開発の新たな道を開く可能性があります。
Amazon SageMaker JumpStartを使用してLLMと対話するためのWeb UIを作成します
ChatGPTの発売および生成AIの人気の上昇は、AWS上で新しい製品やサービスを作成するためにこの技術をどのように利用できるかについての好奇心を持つ顧客たちの想像力を捉えていますこれにより、より対話的なエンタープライズチャットボットなどの製品やサービスを作成する方法を紹介しますこの記事では、Web UIを作成する方法について説明します
このAIペーパーは、写真リアルな人物モデリングと効率的なレンダリングのブレイクスルーであるHiFi4Gを明らかにします
4D(時空)人間パフォーマンスのボリューメトリックな記録とリアルな表現は、観客とパフォーマーの間の障壁を取り払います。それはテレプレゼンスやテレエデュケーションなど、没入型のVR / AR体験を提供します。一部の早期システムは、記録された映像からテクスチャモデルを再現するために明示的に非剛体登録を使用しています。しかし、それらは依然として遮蔽とテクスチャの不足に対して感受性があり、再構築の出力にはギャップとノイズが生じます。最近のNeRFを例に挙げる最新のニューラルブレイクスルーは、写真のようなリアルなボリュームレンダリングを実現するために、明示的な再構築ではなく、座標ベースのマルチレイヤパーセプトロン(MLP)を最適化します。 特定の動的なNeRFのバリエーションでは、追加の暗黙変形フィールドを使用して、すべてのライブフレームでの特徴の再現に対してカノニカルな特徴空間を保持しようとします。ただし、このようなカノニカルデザインは、重要なトポロジーの変化や大きな動きに対して敏感です。最近の手法では、平面分解やハッシュエンコーディングによって、3D特徴グリッドを簡潔に説明し、動作時のメモリとストレージの問題を解決しました。最近、静的なシーンを表すための明示的なパラダイムへ戻る3Dガウシアンスプラッティング(3DGS)があります。これにより、3DガウシアンプリミティブのGPUフレンドリーなラスタライゼーションに基づく、過去に実現できなかったリアルタイムかつ高品質な放射場レンダリングが可能です。いくつかの進行中のプロジェクトでは、3DGSを動的な設定に適応させるために変更されています。 一部は、動的なガウシアンの非剛体運動に注力し、その過程でレンダリングの品質を失います。他のものは、元の3DGSの明示的でGPUフレンドリーなエレガンスを失い、追加の暗黙の変形フィールドを使用して動きの情報を補完することができないため、長時間の動きを処理することができません。本研究では、ShanghaiTech大学、NeuDim、ByteDance、およびDGeneの研究チームが、高密度ビデオから高品質な4D人間パフォーマンスを再現するための完全に明示的かつコンパクトなガウシアンベースのHiFi4Gメソッドを紹介しています(図1を参照)。彼らの主なコンセプトは、非剛体トラッキングと3Dガウシアン表現を組み合わせて、運動と外観データを分離し、コンパクトで圧縮フレンドリーな表現を実現することです。HiFi4Gは、現在の暗黙のレンダリング技術の最適化速度、レンダリング品質、およびストレージオーバーヘッドに関して、顕著な改善を示します。 彼らの明示的な表現の助けを借りて、彼らの結果はGPUベースのラスタ化パイプラインに容易に統合することもできます。これにより、VRヘッドセットを身に着けたままバーチャルリアリティで高品質な人間パフォーマンスを目の当たりにすることができます。研究チームはまず、細かいガウシアンと粗い変形グラフからなるデュアルグラフ技術を提供し、ガウシアン表現と非剛体トラッキングを自然に結び付けます。前者では、研究チームはNeuS2を使用してフレームごとのジオメトリプロキシを作成し、埋め込み変形(ED)をキーフレームのように使用します。このような明示的なトラッキング手法により、シーケンスがパートに分割され、各セグメント内で豊富な運動が与えられます。キーボリュームの更新と同様に、研究チームは3DGSを使用して現在のセグメント内のガウシアンの数を制限し、以前のセグメントから誤ったガウシアンを除外し、新しいガウシアンを更新します。 次に、研究チームは細かいガウシアングラフを構築し、粗いEDネットワークから各ガウシアン運動を補完します。ガウシアングラフをEDグラフで単純に曲げてスクリーン空間に当てはめると、顕著な不自然な歪みが生じます。制限なしに継続的な最適化が行われることから、ぶれのアーティファクトも生じます。ガウシアン特性の更新と非剛体運動の先行に適切なバランスを取るために、研究チームは4Dガウシアン最適化アプローチを提案しています。研究チームは、各ガウシアンの外観特性(不透明度、スケーリング係数、球面調和)の一貫性を保証するために、時間の経過による正則化を採用しています。研究チームは、近隣のガウシアン間でローカルにできるだけ剛体に近い運動を生成するために、運動特性(位置と回転)のスムーズ化項を提案しています。 非剛体移動を示す領域におけるちらつきアーティファクトを罰するため、これらの正則化に適応的な加重メカニズムが追加されています。研究チームは最適化後に空間的に時間的にコンパクトな4Dガウス関数を生成します。研究チームは、ガウスパラメータのための従来の残差補正、量子化、エントロピー符号化に従う同梱の圧縮技術を提案し、HiFi4Gを消費者にとって有用なものとしています。圧縮率は約25倍で、各フレームに必要なストレージ容量は2MB未満です。これにより、VRヘッドセットを含むさまざまなデバイスで人間のパフォーマンスを没入感ある観察することが可能です。 要点をまとめると、彼らの主な貢献は以下の通りです: ・研究チームは、人間のパフォーマンスレンダリングのためのガウススプラットと非剛体トラッキングを結ぶコンパクトな4Dガウス表現を提案しました。 ・研究チームは、異なる正則化設計を使用して空間的に時間的に一貫性のある4Dガウス関数を効率的に復元するための二重グラフアプローチを提供します。 ・研究チームは、複数のプラットフォーム上で低ストレージな没入型人間パフォーマンス体験を実現するための補完的な圧縮アプローチを提供します。
ボーダフォンは、AWS DeepRacerとアクセンチュアを活用して機械学習のスキルを向上させています
「ボーダフォンは、2025年までに、イノベーションを加速し、コストを削減し、セキュリティを向上させ、業務を簡素化するという目標を持ち、通信会社(テルコ)からテクノロジー企業(テックコー)への転換を行っていますこの変革に貢献するために、数千人のエンジニアが採用されていますまた、2025年までに、ボーダフォンは、グローバルな労働力の50%がソフトウェア開発に積極的に関与することを計画しています」
費用効率の高いGPT NeoXおよびPythiaモデルの訓練における節約と正確性:AWS Trainiumの活用
大規模言語モデル(またはLLMs)は、日々の会話のトピックとなっていますその迅速な採用は、1億人のユーザーに到達するまでに必要な時間の量で明らかですこれが「Facebookでの4.5年」からわずかな「2ヶ月でのChatGPT」の史上最低になったことが証拠です生成型事前学習トランスフォーマー(GPT)は因果自己回帰の更新を使用します[...]
「月光スタジオのAIパワード受付アバター、NANAに会いましょう」
エディター注:この投稿は、当社の週刊「In the NVIDIA Studio」シリーズの一環であり、注目のアーティストを紹介し、クリエイティブのヒントやトリックを提供し、NVIDIA Studio技術がクリエイティブなワークフローを向上させる方法を示しています。また、新しいGeForce RTX 40シリーズGPUの機能、技術、リソースについて詳しく説明し、コンテンツ制作を劇的に加速させる方法を探求しています。 ムーンシャインスタジオのクリエイティブチームは、アニメーションとモーションデザインに特化したアーティスト志向の視覚効果(VFX)スタジオであり、問題を解決するように指示されました。 彼らの台湾オフィスでは、受付担当者が常に面会や挨拶に忙しく、他の重要な事務作業を完了できませんでした。さらに悪いことに、自動化されたキオスクの挨拶システムは予想通りに機能していませんでした。 シニアムーンシャインスタジオ3Dアーティストであり、今週のNVIDIA StudioクリエーターであるEric Chiangは、この課題に取り組みました。彼は現実的でインタラクティブな3Dモデルを作成しました。これは新しいAIパワードのバーチャルアシスタントであるNANAの基盤となります。このアバターは、ゲストを歓迎し、基本的な会社情報を提供することができ、受付担当者チームの負担を軽減します。 Chiangは、彼のお気に入りのクリエイティブアプリでGPUアクセラレーションの機能を使用してNANAを構築しました。それは彼のNVIDIA StudioバッジのついたMSI MEG Trident X2 PCという装備されたGeForce RTX 4090グラフィックカードで駆動されています。 彼のクリエイティブワークフローは、彼のGPUのテンソルコアによって強化され、AI特有のタスクを高速化し、作業の品質を向上させました。RTXとAIはゲームのパフォーマンスを向上させ、生産性を向上させるなどもします。 これらの高度な機能はNVIDIA Studio Driversによってサポートされています。…
医療AIツールは危険な誤りを引き起こす可能性があります政府はそれらを予防するのに役立つのでしょうか?
バイデン政権は、人工知能の健康ケアアプリに対して、安全性を確保するためのラベリングシステムの導入を提案しています
コンセプトスライダー:LoRAアダプタを使用した拡散モデルの正確な制御
彼らの能力のおかげで、テキストから画像への変換モデルは芸術コミュニティで非常に人気がありますただし、現在のモデル、最先端のフレームワークを含めて、生成された画像の視覚的な概念や属性をコントロールするのは難しく、満足のいく結果を得ることができませんほとんどのモデルはテキストのプロンプトにのみ依存しており、継続的な属性の制御に課題があります[…]
(きんむかんりをかくめいかするみっつのほうほう、じぇねれーてぃぶAI)
「生成AIは企業界を揺るがす方法でヘッドラインを飾っていますが、デスクを持たない労働者を雇用するビジネスも、労働力管理(WFM)プロセスの一部としてその技術の利点を受けることができます最近のマッキンゼー&カンパニーの報告によれば、生成AIは最大で消費する退屈な職場のタスクを自動化する可能性があります」
ハイプに乗ろう! ベイエリアでのAIイベント
サンフランシスコは、世界の人工知能(AI)の首都として誇り高く立っていますAIの領域に没頭するなら、今がこの都市にいるべき最適な時ですこの現象の重要な部分は、AIに焦点を当てたイベントの急増によりもたらされています過去数年間は、ベイエリアのイベント主催者にとって挑戦が続いてきました
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.