Learn more about Search Results 結論 - Page 18

「LLMsを使用して、ロボットの新しいタスクをコーディングする」

研究チームが、大規模な言語モデルを使用してロボットに新しいタスクをコーディングし、それをシミュレートするツールを開発しました

「AIと働き方の未来:AI時代における労働力の再教育」

AIは私たちの働き方を変えつつあり、それは想像以上の速さで進行しています毎週1億人以上が既にChatGPTを利用しており、半数以上の従業員がAIツールを仕事で使用していると回答しています確かにAIは特定の人々が仕事をより良く遂行するのに役立つでしょうが、多くの人々は未だに使用方法や利点について疑問を抱いています...

お客様との関係を革新する:チャットとReact.jsとのCRMのシナジーを探る

このブログ記事では、CRM、リアルタイムチャットアプリケーション、およびReact.jsライブラリの相互関係について探求します

自律AIエージェント:データサイエンスと技術の未来を切り拓く先駆者

イントロダクション テクノロジーのダイナミックな風景において、自律型AIエージェントは変革的な存在として登場し、データと人工知能との相互作用を再構築しています。この魅力的な領域に深く入り込むと、これらのエージェントが単なるプログラム以上のものであることが明らかになります。彼らは私たちの日常生活にAIを統合するパラダイムシフトを象徴しているのです。 自律型AIエージェントの理解 自律型AIエージェントは、人間の介入なしで意思決定と行動実行が可能な知的な存在です。これらのエージェントは最新のアルゴリズムと機械学習モデルを活用してデータを分析し、洞察を得て自律的にタスクを実行します。 自律型AIエージェントはどのように動作するのですか? 以下は、彼らがどのように動作するかの詳細です: 計画: 目標の定義: エージェントは、達成したい特定のタスクやプロセスの最適化など、あらかじめ定義された目標から始めます。 環境の評価: エージェントはセンサーや他のデータソースを通じて、周囲の情報を継続的に収集します。これにより、エージェントは現在の状況や潜在的な障害を理解するのに役立つデータを得ます。 プランの生成: エージェントは目標と環境情報に基づいて目的を達成するための計画や戦略を生成します。これにはアクションの計画、適切なツールの選択、潜在的な結果の予測などが含まれる場合もあります。 意思決定: データの分析: エージェントはセンサーの読み取り、過去の経験、学習したモデルなどの利用可能なデータを分析し、状況を理解し、異なるアクションの潜在的な結果を予測します。 アクションの選択: 強化学習や他の意思決定アルゴリズムを使用して、エージェントは目標を達成する可能性が最大化すると信じるアクションを選択します。 適応と学習: エージェントは経験から継続的に学びます。行動の結果を監視し、新しい情報に基づいて知識ベースや意思決定プロセスを更新します。 ツールとリソース: LLM(大規模言語モデル): これらは、エージェントの脳として機能し、コミュニケーションや推論のための人間のような言語理解と生成能力を提供します。 センサーとアクチュエーターにより、エージェントは物理的な環境を知覚し、相互作用することができます。…

機械学習を革新する:たった7行のコードでAutoGluonを使ってKaggleのトップ4%を達成

Slalom _buildで新しいデータエンジニアリングの役割を始めてから、数年前のMLの経験を最新化する必要があることに気付きましたデータエンジニアリング/データの経験を積んでから数年が経ちましたが...

「MLOps をマスターするための5つの無料コース」

「機械学習の基礎を学び終え、次は何をすべきか悩んでいますか?ここは正しい場所です!」

「推測を超えて:効果的な記事タイトル選択のためのベイジアン統計の活用」

記事は、ベイジアン多腕バンディットアルゴリズムがデジタルメディアのタイトル選択を最適化し、従来のA/Bテスト手法を超えることができる方法について議論していますPythonの例を使って具体的に示し、視聴者のエンゲージメントとコンテンツ作成における意思決定を強化することを紹介しています

2024年に使用するためのトップ5の生成AIライブラリ

イントロダクション テクノロジーの進化する世界において、人工知能(AI)は変革的な力として登場しました。基本的なアルゴリズムから最新の機械学習モデルの洗練まで、AIの旅路は確かに革命的であった。そして、ジェネレーティブAIライブラリの出現により、魅惑的な章が展開されています。しかし、ジェネAIとは一体何でしょうか? ジェネレーティブAIと共に未来に踏み出しましょう!従来のモデルとは異なり、ジェネAIは産業を再構築するため新たなデータを生成します。ChatGPTのようなツールが道を切り開き、ビジネスの景観を変えています。最新のAIツールの「2024年のトップ5ジェネレーティブAIライブラリ」を探索し、革新を再定義し、ユーザーエクスペリエンスを革命化するパワーと潜在能力を解き放ちましょう。これらのライブラリは、AIの進化の最前線を示しています。ジェネレーティブAIの未来へ、一緒にこのエキサイティングな旅に参加しましょう! ジェネレーティブAIライブラリとは何ですか? ジェネAIライブラリは、ジェネレーティブ人工知能の基盤となる、事前学習済みのモデルとアルゴリズムのリポジトリです。これらのライブラリは、AIの創造的なポテンシャルに一から始めることなく、開発者や企業がアクセスできるようにするものです。学習されたパターンとデータの基盤を提供することで、ジェネAIライブラリはテキストや音楽、ビジュアルなど多様な出力の生成を可能にします。これらのライブラリを活用することで、開発プロセスが効率化され、革新と効率性が促進されます。ジェネAIライブラリは、幅広いアプリケーションと産業に対して、高度なAIの機能を民主化する役割を果たしています。 実践的な学習でジェネレーティブAIのゲームをアップグレードしましょう。当社のジェネAI Pinnacle Programで、ベクトルデータベースの驚異を発見しましょう! 2024年に使用するトップ5ジェネレーティブAIライブラリ 1. Open AI OpenAIのAPIは、ジェネAIの世界に没入した専門家にとって、革新的なツールとして位置づけられます。柔軟な「テキストイン、テキストアウト」のインターフェースを提供するこのAPIは、一般的な解決策として際立っており、ジェネAIの専門家が日常の業務やプロジェクトにシームレスに統合することが可能です。ほとんどの英語のタスクに適用可能な柔軟性があり、実験、開発、探索に使える広範なプレイグラウンドを提供します。 APIは、最小限の例での理解とタスクの実行に優れています。ジェネAIのプログラミングにおいて直感的な選択肢であり、プロフェッショナルは複雑なシステムの問題ではなく、創造的な出力に集中することができます。タスク固有のトレーニングによるパフォーマンスの向上も、ユーザーが提供したデータセットやフィードバックに基づくカスタマイズを可能にします。OpenAIはシンプルさに重点を置くことで、さまざまなユーザーベースにアクセス可能な状態を確保しており、その技術の継続的なアップグレードは、機械学習の急速な進化に適応することへの献身を示しています。 さらに、OpenAIは負の影響を及ぼすアプリケーションに対して慎重なモニタリングとアクセスの終了を行う責任あるAIの使用に重点を置いています。プライベートベータ版のリリースはユーザーの安全性への取り組みを反映し、言語技術の安全関連の研究を継続して行っています。OpenAIのAPIを使用するジェネAIの実践者は、ポジティブなAIシステムへの貢献となる強力なツールを作成しています。このAPIは、収益を超えて一般的なAIの進歩を推進し、障壁を取り除き、ジェネAIコミュニティをさまざまな可能性へと前進させるのです。 2. PandasAI PandasAIは、革新的なジェネAIパワーを備えたデータ分析ライブラリであり、ジェネAIの専門家にとって日常の業務の風景を再構築します。広く使われているPandasライブラリを基盤に構築されたPandasAIは、ジェネAIモデルをシームレスに統合することで生産性を向上させます。前処理やデータの可視化などの伝統的なPandasタスクは、ジェネAIの能力によって高められ、データフレームに会話の要素を導入します。 PandasAIの魅力は、複雑なコーディングプロセスを自然な言語インターフェースに変換することにあります。ジェネAIによって、データサイエンティストは自然な言語でデータセットと会話するだけで簡単にクエリを実行することができます。この革新により、前処理や分析フェーズが大幅に迅速化し、従来のコーディングプラクティスとは異なるアプローチが可能となります。このライブラリは、テック系とノンテック系の両方のプロフェッショナルがデータセットと簡単にやりとりできる新たな可能性を開きます。 パンダのAIの中心には、ジェネレーティブ人工知能(GenAI)があります。GenAIは既存のデータのパターンを特定することで、多様なデータタイプを生成することができる一部の人工知能です。GenAIを活用することで、パンダのAIはユーザーが複雑なコードを書く必要なく、自然言語で意図を表現し、その指示が正確に実行される新しい時代をもたらします。この変革的なアプローチは、日常のタスクを効率化するだけでなく、ジェネレーティブAIの領域で包括的かつ効率的なデータ分析プロセスの道を開きます。 3. HuggingFace Transformers HuggingFace…

「DreamSyncに会ってください:画像理解モデルからのフィードバックを用いてテキストから画像の合成を改良する新しい人工知能フレームワーク」

カリフォルニア大学南部、ワシントン大学、バール・イラム大学、およびGoogle Researchの研究者は、人間の注釈、モデルアーキテクチャの変更、または強化学習の必要性を排除して、拡散ベースのテキストから画像への変換(T2I)モデルにおける整列と美的魅力の向上の問題に取り組むDreamSyncを紹介しました。これは、候補画像を生成し、Visual Question Answering(VQA)モデルを使用して評価し、テキストから画像へのモデルを微調整することにより、その目的を達成しています。 以前の研究では、TIFAなどのVQAモデルを使用してT2I生成を評価することが提案されていました。 TIFAでは、4Kのプロンプトと25Kの質問を使用して、12のカテゴリにわたる評価を実施できます。 SeeTrueやRLHFなどのトレーニング関連手法やトレーニングアダプタなどは、T2Iの整列に取り組んでいます。 SynGenやStructuralDiffusionなどのトレーニングフリーテクニックは、整列の推論を調整します。 DreamSyncは、特定のアーキテクチャやラベル付きデータに依存せずに、ユーザーの意図と美的な魅力に対する忠実度を向上させるT2Iモデルの課題に取り組むためのモデル非依存のフレームワークを採用しています。ビジュアル-言語モデル(VLM)を利用して生成された画像と入力テキストとの相違点を特定するモデル非依存のフレームワークを導入しています。この方法では、複数の候補画像を作成し、VLMを使用して評価し、T2Iモデルを微調整します。 DreamSyncはベースラインの手法を上回る画像の整列を提供し、さまざまな画像特性を向上させることができ、整列改善に限定されない応用範囲を持っています。 DreamSyncは、VLMからのフィードバックを使用してT2I生成の整列を行うためのモデル非依存のフレームワークを採用しています。このプロセスでは、プロンプトから複数の候補画像を生成し、それらをテキストの忠実度と画像の美的魅力のために専用のVLMで評価します。 VLMのフィードバックによって選択された最良の画像は、収束するまで反復してT2Iモデルを微調整するために使用されます。また、反復的なブートストラッピングを導入し、VLMを教師モデルとして使用して、T2Iモデルのトレーニングのためのラベルのないデータをラベル付けします。 DreamSyncは、SDXLとSD v1.4のT2Iモデルの両方を向上させ、SDXLの3つのイテレーションでは、TIFAで忠実度が1.7ポイントおよび3.7ポイント向上しました。ビジュアルの美的感覚も3.4ポイント向上しました。DreamSyncをSD v1.4に適用すると、TIFAで忠実度が1.0ポイント向上し、絶対スコアが1.7ポイント増加し、美的感覚が0.3ポイント向上します。比較研究では、DreamSyncは整列においてSDXLを上回り、より適切なコンポーネントを持つ画像と3.4個の正しい回答を生成します。それはTIFAとDSGのベンチマークで視覚的な忠実度を妥協することなく優れたものを達成し、反復による徐々の改善を示しています。 結論として、DreamSyncは難しいT2Iベンチマークで評価された多目的なフレームワークであり、配布内および配布外の設定の両方で整列と視覚的魅力の重要な改善を示しています。このフレームワークは、ビジョン-言語モデルからの二重フィードバックを組み込んでおり、人間の評価と好み予測モデルによって検証されています。 DreamSyncの将来の改善点には、ミスアライメントの特定のための詳細なアノテーション(バウンディングボックスなど)を使用したフィードバックの作成が含まれます。各イテレーションでプロンプトを調整することにより、テキストから画像への合成において特定の改善を目指します。言語構造と注意マップの探求により、属性-オブジェクトの結びつきを向上させることを目指しています。人間のフィードバックで報酬モデルをトレーニングすることで、生成された画像をユーザーの意図に合わせることができます。DreamSyncの応用範囲を他のモデルアーキテクチャに拡大し、パフォーマンスの評価および多様な設定での追加の研究を行うことは、現在の調査の領域です。

パフォーマンスの向上と最適化されたリソース使用のためのダイナミックなLoRAローディング

私たちは、拡散モデルに基づくLoRAのハブ内の推論速度を大幅に高速化することができました。これにより、計算リソースを節約し、より良いユーザーエクスペリエンスを提供することができました。 モデルへの推論を行うには、2つのステップがあります: ウォームアップフェーズ – モデルのダウンロードとサービスのセットアップ(25秒)。 推論ジョブ自体(10秒)。 これらの改善により、ウォームアップ時間を25秒から3秒に短縮することができました。数百の異なるLoRAに対する推論を、たった5つのA10G GPU以下で提供することができます。さらに、ユーザーリクエストへの応答時間は35秒から13秒に短縮されました。 一つのサービスで多くの異なるLoRAを動的に提供するために、Diffusersライブラリで開発された最近の機能を活用する方法についてもっと話しましょう。 LoRA LoRAは「パラメータ効率」(PEFT)メソッドの一環である、微調整技術です。このメソッドは、微調整プロセスによって影響を受けるトレーニング可能なパラメータの数を減らすことを試みます。微調整の速度を高めながら、微調整済みチェックポイントのサイズを減らすことができます。 モデルの全ての重みに微小な変更を行うことによってモデルを微調整する代わりに、ほとんどの層を固定し、注意ブロック内の特定の一部の層のみをトレーニングします。さらに、これらの層のパラメータに触れず、二つの小さな行列の積を元の重みに加えることで、これらの層のパラメータを更新します。これらの小さな行列は微調整プロセス中に更新され、ディスクに保存されます。これにより、元のモデルのパラメータはすべて保存され、適応方法を使用してLoRAの重みを上にロードすることができます。 LoRA(Low Rank Adaptation)という名前は、先ほど言及した小さな行列から来ています。このメソッドについての詳細は、この記事または元の論文をご覧ください。 上記の図は、LoRAアダプタの一部として保存される二つの小さなオレンジ色の行列を示しています。後でこれらのLoRAアダプタをロードし、青いベースモデルと結合して黄色の微調整モデルを取得することができます。重要なことは、アダプタをアンロードすることも可能なので、いつでも元のベースモデルに戻すことができるということです。 言い換えると、LoRAアダプタは、必要に応じて追加および削除が可能なベースモデルのアドオンのようなものです。AとBの小さなランクのため、モデルサイズと比較して非常に軽量です。したがって、ロード時間は全体のベースモデルをロードするよりもはるかに高速です。 例えば、多くのLoRAアダプタのベースモデルとして広く使用されているStable Diffusion XL Base 1.0モデルリポジトリを見ると、そのサイズは約7 GBです。しかし、このモデルのような典型的なLoRAアダプタは、わずか24 MBのスペースしか使用しません!…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us