Learn more about Search Results いくつかの - Page 18

「GPS ガウシアンと出会う:リアルタイムにキャラクターの新しい視点を合成するための新たな人工知能アプローチ」

マルチビューカメラシステムの重要な機能の1つは、ソースの写真を使用して新しい視点から写真のような画像を生成する新規ビュー合成(NVS)です。人間のNVSのサブフィールドは、ホログラフィックコミュニケーション、ステージパフォーマンス、スポーツ放送のための3D / 4D没入型シーンキャプチャなどの領域で、リアルタイムの効率と一貫した3D外観に大きく貢献する可能性があります。従来の方法では、新しいビューを作成するために加重ブレンディングプロセスが使用されてきましたが、これらの方法は通常、非常に密な入力ビューまたは非常に正確なプロキシジオメトリのいずれかに依存していました。スパースビューカメラ設定下でNVSのために高品質な画像をレンダリングすることは依然として大きな課題です。 最近、ニューラルラディアンスフィールド(NeRF)などの暗黙の表現によって、いくつかのNVSタスクで優れたパフォーマンスが示されています。プロセスを高速化するための戦略の進化があったにもかかわらず、暗黙の表現を使用するNVSメソッドは、シーン空間の密なスポットをクエリするのにはまだ時間がかかります。一方、明示的な表現のリアルタイムおよび高速レンダリング能力、特にポイントクラウドは持続的な関心を集めています。ニューラルネットワークと組み合わせると、ポイントベースのグラフィックスは、人間のNVSテストでNeRFよりも現実的で効率的な明示的な表現を提供します。 哈尔滨工业大学と清华大学の新しい研究では、この論文ではパーサブジェクト最適化を使用せずに、前向きにガウスパラメータを回帰するための普遍的な3Dガウススプラットアプローチを目指しています。彼らの目標は、成功した学習ベースの人間再構成アプローチであるPIFuのような大規模な3D人間スキャンモデルを使用して、さまざまな人間のトポロジ、衣類スタイル、姿勢依存変形を作成するためにガウス表現の学習方法を学ぶことです。提案された手法は、これらの獲得した人間のプライオリティを利用して汎用的なガウスモデルによる人間の外観の迅速な描写を可能にします。 研究者たちは、無構造なポイントクラウドの代わりにソースビューの画像平面(位置、色、スケーリング、回転、不透明度)に定義された2Dガウスパラメータマップを提示しています。これらのガウスパラメータマップにより、ピクセルごとのパラメータを使用してキャラクターを描写することができます。また、3D演算子の代わりにコスト効率の良い2D畳み込みネットワークを使用することができます。2つのソースビューの両方に対して2ビューステレオを使用して深度マップを推定することで、2Dパラメータマップを3Dガウスポイントに変換します。これにより、ソースビューの両方からの未投影ガウスポイントによってキャラクターが表現され、スプラットアプローチを使用して新しいビューの画像が生成されます。人間のキャラクターに特有の自己遮蔽は、既存のカスケードコストボリュームアプローチでは深度推定を難しくします。したがって、チームは、このような大規模データ上のガウスパラメータ回帰および反復的なステレオマッチングベースの深度推定モジュールを同時にトレーニングすることを提案しています。ガウスモジュールのレンダリング損失の最小化により、深度推定によって引き起こされる可能性のあるアーティファクトを修正し、3Dガウス位置の精度を向上させます。このような協力的なアプローチのおかげで、トレーニングはより安定します。 実際には、チームは最新のグラフィックスカードを1枚だけ使用して、25 FPS以上のフレームレートで2Kの新しいビューを実現することができました。提案手法の広範な汎用性と高速レンダリング能力により、最適化や微調整なしで見たことのないキャラクターを瞬時にレンダリングすることができます。 彼らの論文で強調されているように、提案されたGPS-Gaussianは高品質の画像を合成しますが、いくつかの要素は手法の効果にまだ影響を与える可能性があります。例として、正確な前景マッティングは重要な前処理ステップです。また、ターゲットエリアが1つのビューでは完全に見えず、他のビューでは見える場合(6つのカメラセットアップなど)、この手法では適切に処理できません。研究者たちは、この困難を時系列データを使用することで解決できると考えています。

データサイエンスへのゲートの解除:GATE 2024 in DS&AIの究極の学習ガイド

イントロダクション Graduate Aptitude Test in Engineering(GATE)は、インドで行われる大学院入学試験です。この試験は主に、工学と科学の学部の内容を総合的に理解できるかをテストします。もし、IIScバンガロールが導入するGATE 2024のデータサイエンスとAIに向けて準備をしているのであれば、正しい場所にいます。この記事は、あなたがこの新しくてエキサイティングなGATEペーパーを進む際の指針となるであろう、学習教材、講義ノート、標準的な参考書などをまとめた宝庫です。 準備の基盤となる主要な科目には、確率と統計、線形代数、機械学習、AIなどがあります。これらはただの科目ではありません。これらこそがデータサイエンスとAIの基盤です。私が紹介する情報源は、IIScバンガロールの名声高い教授陣によってテストされ、推奨されたものです。 確率と統計:チャンスとデータのゲーム 確率と統計においては、挑戦されることを予想しなければなりません。この科目は、CSEのカリキュラムに比べて非常に重要な位置を占めており、追加のトピックが多く含まれています。この難関を乗り越えるためには、正しい参考書を手にする必要があります。私はまず、“A First Course in Probability”(シェルドン・ロス著)から始めることをおすすめします。これは学部レベルでも定番です。これに慣れたら、同じ著者による“Introduction to Probability Models”に進んでください。 より高度な知識を求める方には、“Introduction to Probability Theory”(S.C. PortおよびC.J. Stone著)、さらにその後に続く“Introduction to…

DL Notes 高度な勾配降下法

以前の記事では、勾配降下法について基本的な概念とその種類の最適化における主な課題を要約しましたしかし、スティーブンスティカスティック勾配法のみを取り上げました...

関数を呼び出す

第三者の大規模言語モデル(LLM)の観測性は、AnthropicのClaude、OpenAIのGPTモデル、GoogleのPaLM 2などのモデルに対してベンチマーキングと評価を用いて主にアプローチされています...

ランナーの疲労検知のための時間系列分類 – チュートリアル

ウェアラブルセンサーを使用して収集されたランニングデータは、ランナーのパフォーマンスや全体的なテクニックについての洞察を提供することができますこれらのセンサーから得られるデータは通常、時間の経過によって変化するものです

「データベース間でSQLの実行順序が異なる方法」

「MySQLやPostgreSQLなどのオープンソースデータベースと定期的に協力してきた後、最近、SQL Serverプロジェクトで働く機会があり、SQLに微妙で重要な違いを発見しました...」

「エンティティ抽出、SQLクエリ、およびAmazon Bedrockを使用したRAGベースのインテリジェントドキュメントアシスタントの強化」

会話AIは、最近の生成AIの急速な発展により、特に指示微調整や人間のフィードバックからの強化学習といったトレーニング技術によって導入された大規模言語モデル(LLM)のパフォーマンス改善により、大きな進歩を遂げてきました正しくプロンプトされると、これらのモデルは特定のタスクのトレーニングデータなしで、一貫した会話を行うことができます[…]

「Q4 Inc.が、Q&Aチャットボットの構築において、数値と構造化データセットの課題に対処するために、Amazon Bedrock、RAG、およびSQLDatabaseChainを使用した方法」

この投稿は、Q4 Inc.のスタニスラフ・エシェンコと共同執筆されました企業は、問答型チャットボットを構築する主流アプローチとして、Retrieval Augmented Generation(RAG)に注目しています利用可能なデータセットの性質から生じる新たな課題が引き続き現れていることを確認していますこれらのデータセットは、しばしば数値とテキストデータの混合であり、時には構造化されています

言語モデルを使用したドキュメントの自動要約のテクニック

要約は、大量の情報をコンパクトで意味のある形式に短縮する技術であり、情報豊かな時代における効果的なコミュニケーションの基盤となっていますデータの溢れる世界で、長いテキストを短い要約にまとめることで時間を節約し、的確な意思決定を支援します要約は内容を短縮して提示することにより、時間を節約し、明確さを向上させる役割を果たします

「松ぼっくりベクトルデータベースとAmazon SageMaker JumpStartのLlama-2を使用したリトリーバル増強生成によって幻覚を軽減する」

産業全体でのLLMの採用は止まることのないように見えますが、それらは新しいAIの波を支えるより広範な技術エコシステムの一部です多くの対話AIのユースケースでは、Llama 2、Flan T5、BloomのようなLLMがユーザーのクエリに応答するために必要ですこれらのモデルは質問に答えるためにパラメトリックな知識に依存しています モデルは[…]

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us