Learn more about Search Results 提供しています - Page 185
- You may be interested
- AWSを使った生成AIを活用したクラウド上の...
- AIシステムは、構造設計のターゲットを満...
- アクセラレータの加速化:科学者がGPUとAI...
- 「ウォルマート、よりパーソナライズされ...
- 「ChatGPTコードインタプリタは、すべての...
- インターネット企業が史上最大のサービス...
- 「2024年に注目すべきトップ5のWeb3企業」
- ミキストラル-8x7B + GPT-3 + LLAMA2 70B ...
- 教育のためのHugging Faceをご紹介します 🤗
- コーディングなしで独自のLLMをトレーニン...
- 「ここにあなたが見逃しているものがあり...
- 『ODSC West 2023の最初のセッションとス...
- このAI論文は、それぞれの手のモデルに基...
- 「今日使用されているAIoTの応用」
- サポートベクターマシンへの優しい入門
ExcelとPower BI – 意思決定においてどちらが優れているか?
現代の急速なビジネス環境においては、組織の成功のためには情報をもとにした意思決定が不可欠です。人気のあるビジネスインテリジェンスツールとそのユニークな機能を理解することが、真のポテンシャルを引き出す上で重要です。MS ExcelとPower BIの両方は、データ分析と意思決定に関する印象的な機能を提供しています。ただし、最適な選択を決定するには、具体的な要件に応じて決定する必要があります。この記事では、MS ExcelとPower BIの強みと特定のユースケースについて掘り下げ、ビジネスニーズに合わせてどちらのツールを選択するかをお手伝いします。 MS Excelとは? Microsoft Excelは、データの整理、操作、分析、可視化が可能な強力かつ使いやすいツールです。データ処理、クリーニング、変換などの重要な機能を提供しています。データ分析と可視化には、データ分析ツール、ピボットテーブル、グラフなどの組み込み機能があります。また、Goal Seek、Solver、Decision Trees、Sensitivity analysisなどの機能により、要約されたデータに基づいて情報をもとにした意思決定が可能です。Power PivotやQueryは、データモデリングや変換を容易にすることで、意思決定に重要な役割を果たしています。Excelは、データを分析し、効果的な意思決定を行うための多目的なツールです。 Power BIとは? Power BIは、Excelと同等の性能を持ち、データ変換、意思決定、さまざまなデータソースへの接続、統合、可視化、プレゼンテーションなどの機能を提供するMicrosoftが提供する別の意思決定テーブルです。Power BIには、動的でインタラクティブなレポートやリアルタイムダッシュボードを作成する機能など、独自の特徴があります。また、データモデリング、異なるデータ間の関係の形成、データ内の依存関係の検索なども含まれます。 さらに、Power Queryを介したデータクエリは、直感的なグラフィカルインターフェースを使用して、クリーニング、整形、および変換などのデータ処理アクションを実行する興味深い機能です。Microsoftの製品として、包括的で使いやすいビジネスインテリジェンスツールとしてのコア機能とサービスを提供します。 Excelの最良の機能 1. データの整理に使用できるスプレッドシート ソートおよびフィルタリング:ソートおよびフィルタリング機能を使用して、データを簡単に整理できます。…
Voxel51 は、コンピュータビジョンデータセット分析のための Python コードを生成するために GPT-3.5 の能力を活用する AI アシスタントである VoxelGPT をオープンソース化しました
データ中心のコンピュータビジョンと機械学習ソフトウェアの有名なイノベーターであるVoxel51は、最近VoxelGPTを立ち上げ、コンピュータビジョンの分野で驚くべきブレークスルーを実現しました。GPT-3.5の力とFiftyOneの多目的コンピュータビジョンクエリ言語を活用することで、VoxelGPTはコンピュータビジョンエンジニア、研究者、組織が高品質のデータセットを編集し、高性能のモデルを開発し、AIプロジェクトを概念実証から製品化まで迅速に移行することを可能にします。 VoxelGPTは、自然言語クエリと実用的なPythonコードのシームレスな統合を提供します。この変革的な機能により、ユーザーは1行のコードを書くことなく、データセット内の画像やビデオを簡単にフィルタリング、ソート、意味的にスライスし、洞察を得ることができます。従来のノーコードおよびローコードソリューションとは異なり、VoxelGPTはFiftyOneの高度なクエリと視覚化の簡易性を組み合わせ、ユーザーが好みのツールやライブラリの柔軟性を活用しながら、コンピュータビジョンのワークフローを加速します。 VoxelGPTには、コンピュータビジョンのワークフローを簡素化し、時間とリソースを節約するいくつかの重要な機能があります。 1. コンピュータビジョンデータセットを検索する:ユーザーは自然言語クエリを使用してデータセットを検索し、ランダムサンプルを取得したり、偽の楽観的な予測を行った一意の画像を特定することができます。 2. コンピュータビジョン、機械学習、データサイエンスの質問をする:VoxelGPTは、基本的なコンセプトの洞察や一般的なデータ品質の問題に対する解決策を提供する包括的な教育リソースです。ユーザーは、画像中のオブジェクト検出、データセットの冗長性を減らす方法などについて質問することができます。 3. ドキュメンテーション、API仕様、チュートリアルを検索する:VoxelGPTは、FiftyOneドキュメンテーションの完全なコレクションへのアクセスを提供し、FiftyOne関連の質問に素早く答えるのに役立ちます。カスタムデータセットをFiftyOneにロードする方法、COCO形式でデータセットをエクスポートする方法、ポイントクラウドの2D画像を生成する方法などのトピックを迅速に取り上げることができます。 Voxel51は、データの透明性と明確性を提唱し、高品質のデータセットとコンピュータビジョンモデルを構築するためのオープンソースおよび商用ソフトウェアソリューションを提供しています。数千人のエンジニアや科学者が、機械学習のワークフローのためにその提供を広く採用しています。自動車、ロボット、セキュリティ、小売、ヘルスケアなど多様なセクターのエンタープライズ顧客は、Voxel51が提供する協調プラットフォームであるFiftyOne Teamsに依存して、データセットとモデルの安全な共同作業を行っています。データ中心のAIソリューションを提供することにコミットするVoxel51は、世界にデータ中心のAIをもたらすビジョンを共有する卓越した個人のチームを拡大し続けています。
メリーランド大学カレッジパーク校の新しいAI研究では、人間の目の反射から3Dシーンを再構成することができるAIシステムが開発されました
人間の目は素晴らしい器官であり、視覚を可能にし、重要な環境データを保管することができます。通常、目は2つのレンズとして使用され、光をその網膜を構成する感光細胞に向けて誘導します。しかし、他人の目を見ると、角膜から反射された光も見ることができます。カメラを使用して他人の目を写真に撮ると、イメージングシステム内の一対のミラーに自分の目を変えます。観察者の網膜に届く光と彼らの目から反射する光は同じ源から来るため、彼らのカメラは観察している環境に関する詳細を含む写真を提供するはずです。 以前の実験では、2つの目の画像が、観察者が見ている世界の全景表現を回復させました。リライト、焦点オブジェクトの推定、グリップ位置の検出、個人認識などのアプリケーションは、後続の調査でさらに研究されています。現在の3Dビジョンとグラフィックスの開発により、単一の全景環境マップを再構築するだけでなく、観察者の現実を3次元で復元できるかどうか熟考しています。頭が自然に動くと、目が複数のビューから情報をキャプチャし、反映することを知っています。 メリーランド大学の研究者たちは、過去の画期的な業績と最新のニューラルレンダリングの最新の進歩を融合させた、観察者の環境の3D再構築のための全く新しい技術を提供しています。彼らの方法は、静止したカメラを使用し、目の画像からマルチビューの手掛かりを抽出します。通常のNeRFキャプチャセットアップでは、マルチビュー情報を取得するために移動カメラが必要です(しばしばカメラ位置の推定に続きます)。概念的には単純ですが、実際には、目の画像から3D NeRFを再構築することは困難です。最初の困難は、ソース分離です。彼らは、人間の目の複雑な虹彩のテクスチャと反射を区別する必要があります。 これらの複雑なパターンにより、3D再構築プロセスが不明瞭になります。通常、正常なキャプチャでは、場面のクリーンな写真に対して、虹彩のテクスチャが混在することはありません。この構成により、再構築技術はより困難になり、ピクセルの相関が崩れます。角膜のポーズの推定は、2つ目の困難を提示します。画像観察から正確に位置を特定することが困難であり、小さく、難解な目です。ただし、それらの位置と3D方向の正確さは、マルチビュー再構築にとって重要です。 これらの困難を克服するために、この研究の著者は、虹彩テクスチャを全体的な輝度場から区別しやすくするために、2つの重要な要素を追加して、目の画像でNeRFをトレーニングするためにNeRFを再利用しました。短い放射線を使用したテクスチャ分解(a)およびアイポーズの微調整(b)です。彼らは、現実的なテクスチャを持つ人工的な角膜から反射をキャプチャする写真で複雑な屋内環境の合成データセットを作成して、彼らの技術のパフォーマンスと効果を評価します。彼らはまた、いくつかのアイテムで実際に収集された人工および実際の眼球画像の研究を行い、彼らの方法論のいくつかの設計決定を支援します。 これらが彼らの主な貢献です。 •彼らは、過去の画期的な業績と最新のニューラルレンダリングの最新の進歩を融合させた、観察者の環境の3D再構築のための全く新しい技術を提供しています。 •彼らは、目の画像で虹彩テクスチャを分解するための放射状事前分布を導入することで、再構築された輝度場の品質を大幅に向上させています。 •彼らは、アイボールのノイズのあるポーズ推定を減らす角膜ポーズの微調整プロセスを開発することにより、人間の目から特徴を収集する特別な問題を解決しています。 これらの進展により、視線外の3Dシーンを明らかにし、キャプチャするためのアクシデンタルイメージングの広い範囲で研究・開発の新しい機会が生まれました。彼らのウェブサイトには、彼らの開発を実証するいくつかのビデオがあります。 図1は、目の反射を使用して放射輝度場を再構築することを示しています。人間の目は非常に反射します。被写体の目の反射だけを使用して、移動する頭を記録する一連のフレームから彼らが見ている3Dシーンを再構築して表示することができることを示しています。
AIのダークサイドを明らかにする:プロンプトハッキングがあなたのAIシステムを妨害する方法
LLMsによるハッキングを防止し、データを保護するために、AIシステムを保護してくださいこの新興脅威に対するリスク、影響、予防策を学んでください
ChatGPTを使った効率的なデバッグ
大規模言語モデルの力を借りて、デバッグ体験を向上させ、より速く学習する
PatchTST 時系列予測における画期的な技術革新
トランスフォーマーベースのモデルは、自然言語処理の分野(BERTやGPTモデルなど)やコンピュータビジョンなど、多くの分野で成功を収めていますしかし、時間の問題になると...
Light & WonderがAWS上でゲーミングマシンの予測保守ソリューションを構築した方法
この記事は、ライトアンドワンダー(L&W)のアルナ・アベヤコーン氏とデニス・コリン氏と共同執筆したものですライトアンドワンダーは、ラスベガスを拠点とするクロスプラットフォームゲーム会社であり、ギャンブル製品やサービスを提供していますAWSと協力して、ライトアンドワンダーは最近、業界初の安全なソリューション「Light & Wonder Connect(LnW Connect)」を開発しました[…]
科学者たちは、AIと迅速な応答EEGを用いて、せん妄の検出を改善しました
うつ病を検出することは容易ではありませんが、それには大きな報酬があります。患者に必要な治療を迅速かつ確実に行うことで、より早く、より確実に回復することができます。 改善された検出は、長期的な熟練したケアの必要性を減らし、患者の生活の質を向上させ、重要な財政的負担を減らすことができます。米国では、うつ病に苦しむ人のケアには、国立衛生研究所によると、年間6万4千ドルの費用がかかります。 先月Natureに掲載された論文によると、研究者たちは、高齢者の重症患者におけるうつ病の検出に、NVIDIA GPUによって加速された深層学習モデルであるVision Transformerと、迅速な応答型脳波測定装置であるEEGを使用した方法を説明しています。 この論文は、「限られたリードEEGを使用した監視付き深層学習モデルによるVision Transformerによるうつ病の予測」と題され、サウスカロライナ大学のマリッサ・マルキー、パデュー大学の黄河燃、東カロライナ大学のトーマス・アルバネーゼとSunghan Kim、およびパデュー大学のBaijian Yangが執筆しています。 彼らの革新的なアプローチは、テスト精度率が97%という結果を得て、認知症の予測において可能性のあるブレークスルーを約束しています。そして、AIとEEGを活用することで、研究者たちは予防と治療方法を客観的に評価し、より良いケアを提供することができます。 この印象的な結果は、NVIDIA GPUの高速パフォーマンスの一部によるものであり、CPUに比べてタスクを半分の時間で達成することができました。 うつ病は、重症患者の80%に影響を与えます。しかし、従来の臨床的な検出方法では、症例の40%未満が確認されており、患者ケアの重要なギャップを表しています。現在、ICU患者のスクリーニングには、主観的なベッドサイド評価が必要です。 携帯型EEG装置の導入により、スクリーニングをより正確かつ手頃な価格で実施できるようになる可能性がありますが、技術者と神経学者の不足は課題です。 しかしながら、AIの利用により、神経学者が所見を解釈する必要がなくなり、患者が治療により受容的な2日前にうつ病に関連する変化を検出することができます。また、最小限のトレーニングでEEGを使用することが可能になります。 研究者たちは、自然言語処理のために最初に作成されたAIモデルであるViTを、EEGデータに適用しました。これにより、データ解釈に新しいアプローチが可能になりました。 大型EEGマシンや専門技術者が必要ない迅速なEEG装置の使用は、この研究の重要な発見の一つでした。 この実用的なツールと、収集されたデータを解釈するための高度なAIモデルを組み合わせることで、重症ケアユニットにおけるうつ病のスクリーニングを効率化することができます。 この研究は、病院滞在期間を短縮し、退院率を増加させ、死亡率を減少させ、うつ病に関連する財政的負担を減らすための有望な方法を提供しています。 NVIDIA GPUのパワーと革新的な深層学習モデル、実用的な医療機器を統合することで、この研究は技術が患者ケアを向上させる可能性を強調しています。 AIが成長し発展するにつれて、医療専門家は認知症などの状態を予測し、早期に介入するために、ますますそれに頼ることになるでしょう。これは、重症ケアの将来を変革することになります。 全文を読む。
ウィンブルドン、ビデオハイライトの解説にAIを使用
この発表は、テニスがテクノロジーを受け入れるスポーツとして広がる傾向の一部です
ジョン・イサザ弁護士、FAI氏によるAIとChatGPTの法的な土壌を航行する方法
私たちは、Rimon LawのパートナーであるJohn Isaza, Esq., FAIに感謝しています彼は、法的な景観の変化、プライバシー保護とイノベーションの微妙なバランス、そしてAIツールを統合する際に生じる独特の法的な意義など、多岐にわたる側面で自身の物語と貴重な洞察を共有してくれましたJohnは、AIに関連する課題や考慮事項について貴重な観点を提供しています...John Isaza, Esq., FAI がAIとChatGPTの法的景観を航海するための記事を読む»
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.