Learn more about Search Results 提供しています - Page 184
- You may be interested
- 聴覚処理の解読:深層学習モデルが脳内の...
- 制約最適化とKKT条件
- Hugging Faceがフランスのデータ保護機関...
- 「World of WarcraftのプレイヤーがAIを騙...
- 「MosaicMLは、AIユーザーが精度を向上し...
- マルチモーダル言語モデル:人工知能(AI...
- 2023年上半期:データサイエンスとAIの進展
- なぜDuckDBが人気になっているのか?
- 「アイデアからAIを活用したビジネスへ:A...
- テック業界でデータサイエンティストの仕...
- スタンフォードの研究者が提案する「EVAPO...
- ダイナミックなチャットアプリケーション...
- 「LLMsを使用した用語の翻訳(GPTとVertex...
- モデルマージングとは、複数のモデルを統...
- 「新しいNVIDIA H100、H200 Tensor Core G...
市民データサイエンティストとは誰で、何をするのでしょうか?
イントロダクション 今日のデータ駆動の世界において、データサイエンティストの役割は不可欠となっています。しかし、広大なデータセットに隠された謎を解くためには、データサイエンスのPh.D.を持つ必要はないと言ったらどうでしょうか?自己研鑽によって、正式な訓練を受けていないにもかかわらず、価値ある洞察を見出すスキルとツールを持つ新しいタイプの人材である「市民データサイエンティスト」の時代が到来しました。市民データサイエンティストは、形式的な訓練を受けていない普通の人々でありながら、データを行動可能な知識に変換する非凡な能力を持っており、組織が意思決定を行う方法を革新しています。本記事では、市民データサイエンティストの台頭、ビジネスへの影響、および彼らがもたらすエキサイティングな可能性について探求します。 市民データサイエンティストとは何か? 市民データサイエンティストとは、正式なデータサイエンスの訓練を受けていない個人でありながら、データを分析し洞察を導き出すスキルとツールを持っています。自己サービス型の分析プラットフォームや直感的なツールを活用して、データを探索し、モデルを構築し、データに基づく意思決定を行うことで、組織内でデータの力を民主化しています。 組織が彼らを雇うべき理由 データサイエンスは組織に著しい利益をもたらす広大な分野であり、市民データサイエンティストはデータの力を活用する上で重要な役割を担っています。以下は、企業が彼らを必要とする理由のいくつかです。 データ分析を簡素化する: 市民データサイエンティストは、さまざまな部門やチームに統合されており、特定のビジネスの課題に取り組み、それに関連するデータを探索することができます。これにより、より深い理解とより良い意思決定が可能になります。 ギャップを埋める: 彼らはドメインの専門知識とデータサイエンスの確固たる理解を持っており、技術的なスキルと業界知識をつなぐことができます。これにより、データ分析に文脈と洞察をもたらすことができます。 リアルタイムの洞察: 彼らはドメインの専門知識と自動分析ツールへのアクセス権を持っているため、リアルタイムでデータを分析し、意思決定者に迅速な洞察を提供することができます。これにより、組織は素早く対応し、機会をつかみ、リスクを効果的に軽減することができます。 フォースマルチプライヤー: 彼らはルーティンのデータ分析タスクを担当することで、データサイエンティストがより複雑な課題や戦略的なイニシアチブに注力できるようになります。彼らはフォースマルチプライヤーとして機能し、複数のチームをサポートし、全体的な生産性を向上させます。 ユニークな視点: 彼らは、データ分析に自分たちの多様な経験と専門知識をもたらし、新鮮な視点や革新的な問題解決アプローチを生み出すことができます。彼らのユニークな洞察は、しばしば新しい発見や改善された意思決定につながります。 アジャイルな実験: 市民データサイエンティストは、さまざまな分析手法を試行し、モデルを修正し、仮説をテストする柔軟性を持っています。彼らの適応力は、異なる分析手法を実験することでイノベーションを促進し、各自の分野での進歩を推進します。 必要な主要なスキル 市民データサイエンティストとして成功するために必要なスキルセットには、以下のような分析技術、技術的スキル、および専門的スキルが含まれます。 市民データサイエンティストは、Tableau、Power BI、またはMatplotlibやSeabornなどのPythonライブラリなどのプログラムを使用して、データを視覚的に解釈し、提示することができるようになっている必要があります。 彼らはデータを扱い、統計的手法を適用し、単純な機械学習モデルを開発するための基本的なプログラミングスキルを持っている必要があります。PythonやRなどのプログラミング言語に精通していることが有利です。 彼らはまた、統計学、データモデリング、データ可視化などのいくつかの分野に精通しており、データを評価・解釈し、より有用で効果的な洞察を生み出すことができます。…
TensorFlowを使用して責任あるAIを構築する方法は?
イントロダクション 人工知能(AI)は、今週リリースされる新しいAIアプリ、機能、プラットフォームが数百あるほど、前例のない勢いで急速に発展しています。AIが発展する速度につれて、技術の安全性を確保することがますます重要になってきています。これが責任あるAIが登場する理由です。責任あるAIとは、倫理、透明性、責任を遵守し、AIシステムの持続可能な開発と利用を指します。AI企業はそれぞれ独自のルールやチェックリストを持っていますが、TensorFlowやMicrosoftのようなプラットフォームは、誰でもAIを責任あるものにするために使用できるツールのセットを提供しています。この記事では、各機械学習モデル展開フェーズで使用される、最も重要なTensorFlowツールを紹介しています。 学習目標: TensorFlowが、広範なツールとリソースを提供することで、責任あるAIアプリケーションの構築にどのように貢献するか理解する。 機械学習モデル展開の異なるフェーズについて学ぶ。 機械学習モデル展開プロセスの各フェーズでTensorFlowが提供するさまざまなツールを探索する。 責任あるAIとは? 責任あるAIとは、プライバシー、公正性、安全性、持続可能性などの社会的価値に合致するように、倫理的、透明的、責任を持って人工知能(AI)システムを開発および使用することを指します。責任あるAIは、AIシステムが社会全体の利益になるように設計および使用され、有害な影響を与えたり、バイアスを増幅することを防ぐことができます。 責任あるAIの主要な原則には、透明性、責任、公正性、プライバシー、安全性、持続可能性が含まれます。開発者は、AIシステムの設計、開発、展開、および継続的な監視のすべての段階でこれらの原則を適用することができます。 今日は、TensorFlowを使って責任あるAIアプリケーションを構築する方法について探求します。 TensorFlowと責任あるAIへの貢献 TensorFlowは、機械学習モデルの構築および展開のためのオープンソースプラットフォームです。Googleによって開発されたTensorFlowは、画像認識、音声認識、自然言語処理、予測分析など、さまざまなドメインでAIアプリケーションを作成するためのさまざまなツールとリソースを提供しています。 オープンソースであるため、TensorFlowは透明性と解釈可能性の2つの重要な要素を持っています。さらに、このプラットフォームは、責任あるAIアプリケーションを構築するためのツールとガイドラインをリリースしています。ここでは、機械学習モデル展開のさまざまなフェーズで使用されるいくつかの有用なツールを探索してみましょう。 フェーズ1:問題の定義 TensorFlowには、問題定義フェーズのためのツールセットがあります。PAIR(People + AI Research)ガイドブックやPAIR Explorablesは、AIアプリケーションを計画する際に役立ちます。TensorFlowのガイドラインには、データセットの選択、モデルの選択、およびモデルのパフォーマンス評価の戦略が含まれています。これらのガイドラインに従うことで、AIアプリケーションを正確で信頼性があり、効果的にすることができます。 PAIRガイドブックは、ユーザーのニーズと価値に合わせて設計されたAI製品の包括的なガイダンスを提供しています。PAIR Explorablesは、機械学習アルゴリズムや公正性に関連する複雑なトピックなど、責任あるAIに関連する複雑なトピックを探求するためのインタラクティブなブログです。 フェーズ2:データ収集と準備 機械学習の第二フェーズは、データの収集と準備です。TensorFlowには、このフェーズを容易にするためのいくつかのツールがあります。 TensorFlowデータバリデーション(TFDV)…
公共関係(PR)における10以上のAIツール(2023年)
ChatGPT 簡単に説明すると、ChatGPTは、AIによる会話型ユーザーインターフェースです。ユーザーからの入力を受け取り、分析して回答を生成します。OpenAIテクノロジーにより、マシンは書かれた言語と口頭言語の両方を理解できます。決められた回答をすることも、ユーザーに空欄を埋めるように要求することもできます。機械学習と自然言語処理を採用しているため、このテクノロジーは消費者と意味のある対話をする可能性があります。システムの柔軟性により、顧客サービス、バーチャルエージェント、チャットボットなど、さまざまな設定に適用できます。ChatGPTは、OpenAIテクノロジーを活用して、ユーザーが要求を理解し、実現するための会話型AIシステムを提供しています。 Midjourney Midjourneyは強力な機能と迅速な画像合成のため、最高の人工知能画像生成ツールの1つです。MidjourneyにSMSコマンドを送信するだけで、あとはMidjourneyが処理します。多くのクリエイティブプロフェッショナルが、Midjourneyを使用して、自分たちの仕事にインスピレーションを与える画像を生成しています。Midjourneyで作成された人工知能作品「Théâtre d’Opéra Spatial」は、20人の他の画家を抑えて、コロラド州の博覧会の美術部門で1位を獲得しました。ただし、現在のMidjourneyのホームはDiscordサーバーです。MidJourney Discordサーバーに参加し、ボットのコマンドを利用して画像を作成する必要があります。ただし、すぐに始めることができます。 Brandwatch メディアモニタリングがクライアントの優先事項である場合、Brandwatchはあなたの人工知能ソーシャルリスニングソリューションです。Brandwatchは、あなたの会社に関する書かれた言及と、ロゴや製品の視覚的表現をモニターするためにAIを使用しています。彼らの洗練されたテキスト分析ツールは、ユーザーがあなたのブランドに関するコメントが好意的、悪い、または中立的かどうかを判断することもでき、これらすべての指標を追跡することが容易になっています。 Cleanup.pictures Cleanup.picturesは、AIを搭載した写真編集アプリケーションで、写真から望ましくないオブジェクト、人、テキスト、欠陥を削除することができます。簡単に学習でき、品質を損なうことなく数秒で写真を修正することができます。写真家、広告会社、不動産業者、オンライン小売業者、テキスト、ロゴ、またはウォーターマークを取り除く必要がある人など、さまざまな人々がこのツールを利用できます。Adobe Photoshopのクローンツールとは異なり、このプログラムは、不要なテキスト、人物、オブジェクトの背後に何があるかを正確に特定することができます。任意の解像度の画像をインポートして編集することができます。無料版ではエクスポート解像度が720pxに制限されていますが、Pro版にはそのような制限はありません。 Looka Lookaは、AIによるブランドアイデンティティプラットフォームを使用して、努力を最小限に抑えて洗練されたロゴとブランドアイデンティティを作成できます。ロゴジョイの再ブランド版であるLookaは、無料で利用できます。プロセスは、人工知能を利用して素早く数百の潜在的なロゴデザインを生成するロゴメーカーから始まります。ユーザーは、レイアウトを自分好みに変更することができます。ブランドキットでは、ロゴ、色、フォントを活用して、数十、場合によっては数百の統一されたプロモーション用品を簡単かつ迅速に作成することができます。名刺、ソーシャルメディアプロファイル、メール署名、その他のサンプルドキュメントがブランドキットに含まれています。人工知能によって動作するプラットフォームであるLookaのユーザーは、YouTube、Twitter、Facebookなど、多くのソーシャルメディアプラットフォーム上のプロフィール画像とカバー画像を変更することができます。 Canva Canvaの無料画像作成ツールを使用することで、製品マネージャーがどのように利益を得ることができるかが簡単に理解できます。ステークホルダーミーティング、製品発売などでプレゼンテーションやデッキ用の関連画像を入手することは常に難しい課題でした。時には、望んでいるものの完璧なビジョンがあるにもかかわらず、作業中のストック画像を修正する必要があります。CanvaのAIによるエディターを使用すると、コンテンツを事前に計画し、アイデアを生成し、入力に応じて完璧なグラフィックを見つけるために検索結果を調整することができます。 TLDR この最新のAI搭載Webツールは、記事、文書、エッセイ、論文などの長文を簡潔で情報量の多い段落に自動的に要約することができます。試験勉強をする学生、素早く記事を要約したい作家、生徒に長いドキュメントや章を要約する必要がある教師、新聞や雑誌の長い記事を要約する必要があるジャーナリストなど、すべての人々がこのツールを利用できます。TLDRは、広告、ポップアップ、グラフィックなどのオンライン上の邪魔な要素を取り除き、テキストの主要なアイデアを選択し、弱い議論、未サポートの推測、派手なフレーズ、無駄な注意をそらすものなど、不要な材料を除去することによって、きれいで焦点の合った読書体験を提供します。 ヒント ヒントは人工知能(A.I.)を活用した生産性ツールで、他のアプリと同期して、やるべきこと、ノート、取引、スケジュールを管理するのに役立ちます。Notion、Obsidian、Trello、ClickUp、Hubspot、Pipedrive、Google Calendar、Jiraなどのサービスが統合できます。Telegram、WhatsApp、SMSなどのお気に入りのメッセージングアプリでヒントを見つけることができます。また、ボイスメールを残すこともできます。様々なサービスに接続することで、飛行中にデータを作成、更新、引き出す能力が可能になり、ビジネスと個人の生活をシングルインターフェイスで効率的に管理することができます。ヒントの多くの潜在的な応用例は、プロジェクト管理、販売、CRM管理、ノート取り、情報管理、個人の整理などです。ヒントは、他の人気のあるサービスと統合し、A.I.を利用して、日常的なタスクの効率を改善することで、時間と労力を節約することを目的としています。 DeepL 信頼性の高い翻訳者が必要な場合は、AIを搭載したDeepL翻訳を利用してください。PDF、Word文書、PowerPointプレゼンテーションなど、31の他の言語にテキストやファイル全体を翻訳することができます。技術が言語を迅速かつ自動的に認識できるため、翻訳プロセスは短く、結果は信頼できます。DeepLには、クイック定義用の辞書や用語集もあります。DeepLは、デスクトップコンピュータ、モバイルデバイス、またはChrome拡張機能からアクセスできるため、外出先の消費者にとっては優れたツールです。DeepLは、毎日何百万人もの人々によって最も広く使用されている翻訳ツールの一つです。 Otter.AI…
AI医療診断はどのように動作しますか?
医療分野では、人工知能(AI)が診断や治療計画においてますます頻繁に使用されるようになっています。近年、AIと機械学習は効果的な診断ツールとなっています。より正確な診断を提供することにより、この技術は医療を変革する可能性があります。人工知能は、医療診断におけるヘルスケアの管理、自動化、管理、ワークフローを容易にしています。医療診断におけるAIは、医療サービスの強い圧力を緩和しながら、医療の標準を変える可能性を示しています。 医療診断におけるAIアルゴリズム 以下は、医療診断においてAIが助けているいくつかの分野です。 AIアルゴリズムは医療データを分析し、診断に役立ちます 電子健康記録(EHR)、画像技術、遺伝データ、ポータブルセンサーデータなど、さまざまな種類の医療データが新しいレベルで収集されています。これらの多数のデータは、AIアルゴリズムによって処理および分析され、医療診断に役立つ示唆に富む情報を提供できます。AIアルゴリズムは、患者の病歴、症状、検査結果、およびその他の関連データを調べることによって、見積もりや概念を生み出すことができます。 機械学習とディープラーニング技術の利用 医療診断におけるAIアルゴリズムは、機械学習(ML)アプローチに大きく依存しています。ラベル付きサンプルを含む大規模なデータセットを使用して、MLシステムをトレーニングし、関係や傾向を発見することができます。ディープラーニング(DL)アルゴリズムは、腫瘍の識別、分類、および分類の効率を向上させることによって、医療画像解析を変革しました。 DLアルゴリズムは、テキストデータ、遺伝情報、医療画像など、他のデータタイプを組み合わせて、より詳細な分析を提供することもできます。診断の正確性が向上し、この包括的なアプローチにより、複雑な状態のより深い理解が可能になります。 AIがパターンを検出し、予測する能力 AIアルゴリズムは、医療従事者が見落とす可能性のある関連性、バイオマーカー、および疾患リスクを見つけるために、膨大な量のデータを分析できます。AIアルゴリズムは、複数の要因を同時に考慮することにより、個人の健康状態を包括的に見ることができます。したがって、より正確な診断と個別化された治療戦略が可能になります。 医療画像におけるAIの応用 X線、MRI、およびCTスキャンなどの医療画像の分析におけるAIの利用 AIアルゴリズムは、医療画像の処理において驚異的な能力を示しています。診断スキャンに基づく正確かつ詳細な所見を医療従事者が取得できるようにします。AIはX線画像、MRI、CTスキャンを短時間で処理することができ、人間の専門家がパターンをより速く見つけ、膨大なデータ量を分析し、関連するデータを取得するのを支援します。 異常、腫瘍、およびその他の医療状態の特定におけるAIの役割 AIは、医療画像を使用して、腫瘍、異常、およびその他の医療問題を特定することにおいて、優れた能力を発揮しています。AIアルゴリズムは、がんの場合には膨大な医療画像のコレクションを効果的に分析して腫瘍を特定および分類することができます。AI医療診断システムは、これらの結果を以前のデータと比較して、腫瘍の段階、成長率、および転移の可能性についての専門家に示唆を与え、個別化された治療計画を可能にする情報を提供できます。 AIが診断の正確性と効率を向上させる可能性 医療画像にAIを応用することによって、診断の効率と正確性を向上させる可能性があります。AI医療診断システムは、異なる視点を提供することによって放射線技師を支援し、誤解釈の可能性を減らし、全体的な診断の正確性を高めることができます。また、画像解析を高速化することにより、より迅速な対応とより効果的な医療ケアが可能になります。 疾患の早期検出および予防のためのAI AIによる早期疾患検出およびリスク評価の利用 AIは、広範な患者記録を分析し、病気の存在を示唆する微小なパターンや異常を見つけることによって、早期の疾患認識に重要な役割を果たしています。AIツールは、医療記録、画像研究、スマートデバイスデータなど、様々なデータセットから学習することができます。危険因子や早期警告の兆候を特定することができます。 AIによる患者データ、遺伝情報、およびバイオマーカーの分析の応用 AIは遺伝データを評価し、特定の疾患の発症リスクが高い遺伝子変異を見つけることができます。AI医療診断システムは、遺伝子データをライフスタイル、環境効果、および医療歴に影響を与える要因と統合して、個別のリスク評価スコアを生成することができます。これにより、患者は健康に関する情報を得て、予防措置を取ることができます。また、AIは、血液検査や画像結果などのバイオマーカーを評価し、臨床的に明らかになっていない疾患関連の早期警告症状を見つけることができます。 関連記事:症状が現れる数年前にパーキンソン病を検出するAIツールの開発 AIによる個別化医療と予防医療の支援の可能性…
2023年に知っておくべきトップ10のパワフルなデータモデリングツール
イントロダクション データ駆動型の意思決定の時代において、競争力を維持するために正確なデータモデリングツールを持つことは企業にとって不可欠です。新しい開発者として、堅牢なデータモデリングの基礎は、データベースを効果的に扱うために重要です。適切に構成されたデータ構造は、スムーズなワークフローを確保し、データの損失や誤配置を防止します。 大規模で複雑なタスクに取り組むために、データモデリングツールを利用することがますます重要になっています。これらのツールは時間を節約するだけでなく、データモデリングのプロセスを簡素化することができます。 トランスフォーメーションに寄与するトップ10のデータモデリングツールを発見してください。効率性を求める経験豊富なプロフェッショナルから、ユーザーフレンドリーなソリューションを求める初心者まで、あなたのニーズに合わせて提供します。データの真のポテンシャルを引き出し、自信を持って賢い決定をする旅に出ましょう! データモデリングツールとは何ですか? データモデルは、UML図を使用してしばしば視覚的にデータ仕様を表します。データはSQLまたはNoSQLデータベースに格納され、データモデリングにはどの情報を収集し、どのように格納するかを決定することが含まれます。 データモデリングツールは、データモデリングプロセスを効率化するために使用されます。これらのツールは、データとその複数のモデル層との間のギャップを埋めます。これらのツールは、既存のデータベースをリバースエンジニアリングし、スキーマとモデルを比較およびマージし、自動的にデータベーススキーマまたはDTDを生成することができます。 効果的なデータモデリングソフトウェアは、魅力的な視覚的表現とデータベースとのシームレスな統合を提供します。ユーザーフレンドリーなデータモデリングツールは、概念的なデータモデリングをよりアクセスしやすくします。 データモデリングツールを選ぶ際に考慮すべきことは何ですか? データモデリングツールを選ぶ際には、特定のニーズを決定することが重要です。必須要件と望ましい要件を分類し、後者を優先させます。この決定は長期的な影響を持つ可能性があるため、組織内のさまざまな視点からの意見を考慮してください。 すべてのデータモデリングツールが物理モデルと論理モデルの作成、リバースエンジニアリング、およびフォワードエンジニアリングなどの基本的なタスクを処理できますが、追加の要因も考慮する必要があります。これには、チームベースのモデリング機能、バージョニング、図のカスタマイズオプション、モデルリポジトリの機能、概念的なデータモデルのサポート、エンタープライズメタデータリポジトリとの統合、および異なるモデルレベル(概念的、論理的、物理的)にわたるオブジェクトラインの維持のためのデータ合理化が含まれます。これらの要因は、あなたのデータモデリングニーズについての情報を提供し、適切な選択をするのに役立ちます。 トップ10のデータモデリングツール 1. ER/Studio Embarcadero Technologiesが開発したER/Studioは、データアーキテクト、モデラー、DBA、ビジネスアナリストにとって有用であり、データベース設計とデータ再利用を管理するために役立ちます。ツールによって、データベースコードを自動的に生成することができます。 属性と定義の完全なドキュメントを備えたツールは、ビジネスコンセプトをモデリングするのに役立ちます。 特徴 論理モデルと物理モデルの両方をサポート ツールによって、新しいデータベースの変更に対する影響分析が実施されます。 自動化とスクリプトのサポート サポートされるプレゼンテーションファイルの種類には、HTML、PNG、JPEG、RTF、XML、Schema、DTDが含まれます。 ER/Studioによって、モデルとデータベースの一貫性が保証されます。 価格…
紛争のトレンドとパターンの探索:マニプールのACLEDデータ分析
はじめに データ分析と可視化は、複雑なデータセットを理解し、洞察を効果的に伝えるための強力なツールです。この現実世界の紛争データを深く掘り下げる没入型探索では、紛争の厳しい現実と複雑さに深く踏み込みます。焦点は、長期にわたる暴力と不安定状態によって悲惨な状況に陥ったインド北東部のマニプール州にあります。私たちは、武装紛争ロケーション&イベントデータプロジェクト(ACLED)データセット[1]を使用し、紛争の多面的な性質を明らかにするための詳細なデータ分析の旅に出ます。 学習目標 ACLEDデータセットのデータ分析技術に熟達する。 効果的なデータ可視化のスキルを開発する。 脆弱な人口に対する暴力の影響を理解する。 紛争の時間的および空間的な側面に関する洞察を得る。 人道的ニーズに対処するための根拠に基づくアプローチを支援する。 この記事は、データサイエンスブログマラソンの一環として公開されました。 利害の衝突 このブログで提示された分析と解釈に責任を持つ特定の組織や団体はありません。目的は、紛争分析におけるデータサイエンスの潜在力を紹介することです。さらに、これらの調査結果には個人的な利益や偏見が含まれておらず、紛争のダイナミクスを客観的に理解するアプローチが確保されています。データ駆動型の方法を促進し、紛争分析に関する広範な議論に情報を提供するために、積極的に利用することを推奨します。 実装 なぜACLEDデータセットを使用するのか? ACLEDデータセットを活用することで、データサイエンス技術の力を活用することができます。これにより、マニプール州の状況を理解するだけでなく、暴力に関連する人道的側面にも光を当てることができます。ACLEDコードブックは、このデータセット[2]で使用されるコーディングスキームと変数に関する詳細な情報を提供する包括的な参考資料です。 ACLEDの重要性は、共感的なデータ分析にあります。これにより、マニプール州の暴力に関する理解が深まり、人道的ニーズが明らかにされ、暴力の解決と軽減に貢献します。これにより、影響を受けるコミュニティに平和で包摂的な未来が促進されます。 このデータ駆動型の分析により、貴重な洞察力を得るだけでなく、マニプール州の暴力の人的コストにも光が当てられます。ACLEDデータを精査することで、市民人口、強制的移動、必要なサービスへのアクセスなど、地域で直面する人道的現実の包括的な描写が可能になります。 紛争のイベント まず、ACLEDデータセットを使用して、マニプール州の紛争のイベントを調査します。以下のコードスニペットは、インドのACLEDデータセットを読み込み、マニプール州のデータをフィルタリングして、形状が(行数、列数)のフィルタリングされたデータセットを生成します。フィルタリングされたデータの形状を出力します。 import pandas as pd # ACLEDデータをダウンロードして国別のcsvをインポートする…
あなたの次の夢の役割(2023年)を見つけるのに役立つ、最高のAIツール15選
Resumaker.ai Resumaker.aiは、数分で履歴書を作成するのを支援するウェブサイトです。ポータルは、いくつかのカスタマイズ可能なデザイナー製履歴書テンプレートと直感的なツールを提供して、夢の仕事に就くのを手助けします。他の履歴書ビルダーとは異なり、Resumaker.aiの人工知能(AI)エンジンは、ユーザーのためにデータを自動的に完了・入力することで、履歴書作成プロセスを簡素化します。Resumaker.aiは、SSL暗号化などの対策を講じて、ユーザーデータを不正アクセスから保護します。ツールのライティングガイドとレコメンデーションを使用して、競合から目立つ履歴書をデザインすることができます。ユーザーは、投稿されたポジションの要件を反映させ、自己紹介を行い、自分の資格に関する主張を裏付けるために数字を活用することができます。 Interviewsby.ai 人工知能によって駆動されるプラットフォームであるInterviewsby.aiを使用することで、求職者はインタビューに備えることができます。ユーザーに合わせた模擬面接中に、人間の言葉を認識・解釈することができる言語モデルであるChatGPTがリアルタイムのフィードバックを提供します。希望する雇用に関する情報を入力することにより、アプリケーションはユーザーに適切で現実的なインタビューの質問を生成することができます。質問を作成する機能により、ユーザーが古くなったり関係のない素材でトレーニングする可能性がなくなります。Interviewsby.aiを使用することで、ユーザーはコントロールされた環境で面接スキルを磨き、自分の強みと弱みに注目した具体的なフィードバックを即座に受けることができます。 Existential ユーザーの興味、才能、価値観を評価することで、AIにより駆動される職業探索ツールであるExistentialは、ユーザーのプロフェッショナルな道筋について具体的な提言を行います。目的は、ユーザーにとって刺激的で挑戦的で満足のいく職業を示唆することです。アプリケーションには簡単な発見プロセスがあり、理想的な仕事に関する特定の質問に答えた後、プログラムはユーザーの興味に最も合った推奨事項を提供します。コミットする前に、ユーザーはこれらの選択肢について詳しく学び、自分の目的に合うかどうかを確認することができます。Existentialは、個人が自分の運命を形作り、仕事に意味を見出すことを目指しています。 Jobscan 求職者は、人工知能(AI)によって駆動されるJobscan ATS Resume CheckerおよびJob Search Toolsを使用することで、面接を受ける可能性を高めることができます。プログラムは、求人情報と応募者の履歴書を分析し、関連する資格を分離するための独自の人工知能アルゴリズムを使用します。応募者の履歴書を分析した後、プログラムは、応募者の強みと改善の余地がある部分を詳細に説明したマッチ率レポートを生成します。Jobscan ATS Resume Checkerの助けを借りて、あなたの履歴書をApplicant Tracking Systems(ATS)に最適化し、注目される可能性を高めることができます。 Aragon 人工知能(AI)によって駆動されるプログラムであるAragon Professional Headshotsは、写真家に行かずに、ヘアメイクに時間をかけずに、修正を待たずに、洗練されたヘッドショットを撮影できるようにするツールです。ユーザーは10枚のセルフィーをアップロードし、ツールは瞬時に40枚の高精細写真を返します。さらに、アプリケーションは、AES256でデータを暗号化し、SOC 2およびISO 27001の認定を取得したサービスプロバイダーにのみデータを保存することにより、ユーザーのプライバシーを保護します。ただし、18歳未満の人は利用しないでください。これは利用規約の違反となります。…
GPTとBERT:どちらが優れているのか?
生成AIの人気の高まりに伴い、大規模言語モデルの数も増加していますこの記事では、GPTとBERTの2つのモデルを比較しますGPT(Generative...
Btech卒業後に何をすべきですか?
Btechの後に何をすべきですか?このよくある質問は、最終学年や最近卒業した学生にとって悩みの種です。多くの人々が従来のキャリアパスを選ぶ一方、一部の人々は新しい分野でのキャリアを研究し探求することを決めます。より多くの選択肢を探索し、スキル開発に重点を置き、継続的な学習、進化する技術について常に最新情報を得ることにより、個人は速いペースのBtechの後の旅で成功することができます。この記事では、Btechの後の最良のキャリアオプションについて説明しています。 Btech卒業生の従来のキャリアパス エンジニアの仕事 ソフトウェアエンジニア/開発者: コンピューターサイエンスのBTechを持つソフトウェアエンジニアは、オンラインやモバイルアプリ、データベース管理、ソフトウェアアーキテクチャの開発に参加します。 ハードウェアエンジニア: ハードウェアエンジニアは、コンピューターハードウェアコンポーネントを作成、開発、テストし、最適な動作を確保します。 機械エンジニア: 製品設計、ロボット、産業機械など多様な産業で機械システムを開発、分析、構築します。 電気エンジニア: 電力発電、エレクトロニクス、通信、再生可能エネルギーシステムを計画、開発、維持します。 土木エンジニア: 建設、構造の安全性、環境持続性を維持しながら、インフラプロジェクトの計画、設計、構築、維持を行います。 宇宙航空エンジニア: 航空機、宇宙船、関連技術の設計、開発、テストの責任を担います。 化学エンジニア: 石油化学、医薬品、環境工学、材料科学など、幅広い産業でプロセスを作成、管理します。 環境エンジニア: 環境保護、持続可能性、廃棄物管理のソリューションを提供し、規制に適合します。 大学院研究と研究 MTechまたはME: BTech卒業生は、MTechまたはMEなどの大学院課程を追求することができます。これらには研究の可能性、高度なコースワーク、エンジニアリングの専門分野が含まれます。 MS: BTech卒業生は、研究、コースワーク、協力、論文の達成に焦点を当てた工学のMaster…
BITEとは 1枚の画像から立ち姿や寝そべりのようなポーズなど、困難なポーズでも3D犬の形状とポーズを再構築する新しい手法
生物学や保全、エンターテインメントや仮想コンテンツの開発など、多くの分野で3D動物の形状や態度を捕捉してモデリングすることは有益です。動物を静止させたり、特定の姿勢を維持したり、観察者と物理的接触をしたり、協力的な何かをする必要はないため、カメラは動物を観察するための自然なセンサーです。Muybridge氏による有名な「馬の運動」の連続写真のように、写真を使用して動物を研究する歴史は長いです。しかし、以前の3D人間の形状や態度に関する研究とは異なり、最近では動物の独特な形状と位置に変化できる表現豊かな3Dモデルが開発されています。ここでは、単一の写真から3D犬再構築の課題に焦点を当てます。 犬は、四肢のような関節の変形が強く、品種間の広い形状変化があるため、モデル種として選ばれます。犬は定期的にカメラに捉えられます。したがって、様々な姿勢、形状、および状況が簡単に利用できます。人と犬をモデリングすることには同様の困難があるかもしれませんが、それらは非常に異なる技術的障壁を持っています。多くの3Dスキャンとモーションキャプチャデータがすでに利用可能であり、SMPLやGHUMのような堅牢な関節モデルを学習することが可能になっています。 それに対して、動物の3D観察を収集することは困難であり、現在は、すべての想定される形状と位置を考慮に入れた同様に表現豊かな3D統計モデルを学習するためにより多くのデータが必要です。SMALは、おもちゃのフィギュアから学習された、四足動物のパラメトリックモデルであり、犬を含む動物を写真から3Dで再現することが現在可能になりました。しかし、SMALは、猫からカバまで多くの種に対して一般的なモデルであり、さまざまな動物の多様な体型を描写できますが、大きな耳の範囲などの犬の品種の独特で微細な詳細を描写することはできません。この問題を解決するために、ETH Zurich、Max Planck Institute for Intelligent Systems、Germany、IMATI-CNR、Italyの研究者たちは、正しく犬を表現する最初のD-SMALパラメトリックモデルを提供しています。 また、人と比較して、犬は比較的少量のモーションキャプチャデータしか持っておらず、そのデータのうち座ったり寝そべったりする姿勢はめったにキャプチャされません。そのため、現在のアルゴリズムでは、特定の姿勢で犬を推測することが困難です。たとえば、歴史的データから3Dポーズの事前に学習すると、立ち上がったり歩いたりする姿勢に偏ってしまいます。一般的な制約を使用することで、この事前情報を弱めることができますが、ポーズの推定は非常に未解決となります。この問題を解決するために、彼らは、(地形)動物をモデリングする際に見落とされていた物理的タッチに関する情報を利用しています。つまり、重力の影響を受けるため、地面に立ったり、座ったり、寝転がったりすることができます。 複雑な自己遮蔽のある困難な状況では、彼らは地面接触情報を使用して複雑な犬のポーズを推定する方法を示しています。人間のポーズ推定において地面面制限が使用されてきましたが、四足動物にとっては潜在的な利点が大きいです。四本足は、より多くの地面接触点、座ったり寝そべったりしたときにより多くの体部位が隠れ、より大きな非剛体変形を示唆しています。以前の研究のもう一つの欠点は、再構築パイプラインがしばしば2D画像で訓練されていることです。対応する2D画像と共に3Dデータを収集することは困難です。そのため、再投影すると視覚的証拠に近くなりますが、視野方向に沿って歪んでいる位置や形状を予測することがあります。 異なる角度から見ると、3D再構築が誤った場合があります。対応するデータがないため、遠くまたは隠れた体の部分をどこに配置すべきかを決定するための十分な情報がないためです。彼らは再び、地面接触のシミュレーションが有益であることを発見しました。結合された2Dと3Dデータを手動で再構築(または合成)する代わりに、より緩い3D監視方法に切り替えて、地面接触ラベルを取得します。アノテーターには、犬の下の地面が平らかどうかを指示し、平らである場合は3D動物の地面接触点を追加で注釈するように求めます。これは、アノテーターに実際の写真を提示することで実現されます。 図1 は、BITEが単一の入力画像から犬の3D形状と姿勢を推定できるようになったことを示しています。このモデルは、様々な品種やタイプ、そして訓練ポーズの範囲外である困難なポーズ、たとえば地面に座ったり寝そべったりすることができます。 彼らは、単一の画像から表面を分類し、接点をかなり正確に検出するようにネットワークを教育できることがわかりました。これらのラベルはトレーニングだけでなく、テスト時にも使用できます。最新の最先端モデルであるBARCに基づいて、再構築システムはBITEと呼ばれています。彼らは、新しいD-SMAL犬モデルを初期の荒い適合ステップとして使用してBARCを再トレーニングします。その後、結果の予測を最近作成したリファインメントネットワークに送信し、接地損失を使用してカメラの設定と犬のスタンスの両方を改善するためにトレーニングします。テスト時にも接地損失を使用して、テスト画像に完全に自律的に適合を最適化することができます(図1を参照)。これにより、再構築の品質が大幅に向上します。BARCポーズ事前に対するトレーニングセットにそのようなポーズが含まれていなくても、BITEを使用して(局所的に平面的な)地面に正しく立つ犬を取得したり、座ったり横たわったりといった姿勢で現実的に再構築したりすることができます。3D犬再構築に関する先行研究は、主観的な視覚評価または写真に戻って2D残差を評価することによって評価されており、深度に関連する不正確さを投影しています。彼らは、客観的な3D評価の欠如を克服するために、実際の犬をさまざまな視点から3Dスキャンして、3D真実値を持つ半合成データセットを開発しました。彼らは、この新しいデータセットを使用して、BITEとその主要な競合他社を評価し、BITEがこの分野の新しい標準を確立することを示しています。 彼らの貢献の要約は以下の通りです: 1. SMALから開発された、新しい、犬種固有の3DポストureおよびフォームモデルであるD-SMALを提供します。 2.同時に地面の局所平面を評価するためのニューラルモデルであるBITEを作成します。BITEは、信じられる地面接触を促進します。 3.モデルを使用する前に、(必然的に小さい)先行モデルでエンコードされたものとは非常に異なる犬の位置を回復することが可能であることを示します。 4. StanfordExtraデータセットを使用して、単眼カメラによる3Dポストure推定の最先端を改善します。 5.実際の犬のスキャンに基づく半合成3Dテストコレクションを提供し、真の3D評価への移行を促進します。
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.