Learn more about Search Results RPA - Page 17
- You may be interested
- 未来への進化-新しいウェーブガイドがデー...
- マイクロソフトとETHチューリッヒの研究者...
- 「アルゴリズムを使用して数千件の患者請...
- 高度なAIの約束とリスクについて、ジェフ...
- 2024年にフォローすべきトップ10のデータ...
- 「ゲームの名門生(SoG)と呼ばれる、新し...
- 「AIのアプローチにより、『運動能力の高...
- プロンプトエンジニアリングの芸術:ChatG...
- 「ゼロ-ETL、ChatGPT、およびデータエンジ...
- 「AIがあなたの問題を解決できるでしょう...
- 「生産性を最大化するための5つの最高のAI...
- 「フリーノイズ」にご挨拶:複数のテキス...
- AIは人間過ぎるようになったのでしょうか...
- 「AIチャットボットが$1未満で数分でソフ...
- 「Amazon Kendraを使用して、Adobe Experi...
実践におけるFew-shot学習:GPT-Neoと🤗高速推論API
多くの機械学習のアプリケーションでは、利用可能なラベル付きデータの量が高性能なモデルの作成の障害となります。NLPの最新の発展では、大きな言語モデルで推論時にわずかな例を提供することで、この制限を克服することができることが示されています。これはFew-Shot Learningとして知られる技術です。このブログ投稿では、Few-Shot Learningとは何かを説明し、GPT-Neoという大きな言語モデルと🤗 Accelerated Inference APIを使用して独自の予測を生成する方法を探ります。 Few-Shot Learningとは何ですか? Few-Shot Learningは、機械学習モデルに非常に少量の訓練データを与えて予測を行うことを指します。つまり、推論時にいくつかの例を与えるということです。これは、標準的なファインチューニング技術とは異なり、事前に訓練されたモデルが所望のタスクに適応するために比較的大量の訓練データが必要とされるものです。 この技術は主にコンピュータビジョンで使用されてきましたが、EleutherAI GPT-NeoやOpenAI GPT-3などの最新の言語モデルを使用することで、自然言語処理(NLP)でも使用することができるようになりました。 NLPでは、Few-Shot Learningは大規模な言語モデルと組み合わせて使用することができます。これらのモデルは、大規模なテキストデータセットでの事前トレーニング中に暗黙的に多くのタスクを実行することを学習しています。これにより、モデルはわずかな例だけで関連するが以前に見たことのないタスクを理解することができます。 Few-Shot NLPの例は主に以下の3つの主要な要素から構成されます: タスクの説明:モデルが行うべきタスクの短い説明、例えば「英語からフランス語への翻訳」 例:モデルに予測してほしいことを示すいくつかの例、例えば「sea otter => loutre de mer」…
🤗 Transformersでn-gramを使ってWav2Vec2を強化する
Wav2Vec2は音声認識のための人気のある事前学習モデルです。2020年9月にMeta AI Researchによってリリースされたこの新しいアーキテクチャは、音声認識のための自己教師あり事前学習の進歩を促進しました。例えば、G. Ng et al.、2021年、Chen et al、2021年、Hsu et al.、2021年、Babu et al.、2021年などが挙げられます。Hugging Face Hubでは、Wav2Vec2の最も人気のある事前学習チェックポイントは現在、月間ダウンロード数25万以上です。 コネクショニスト時系列分類(CTC)を使用して、事前学習済みのWav2Vec2のようなチェックポイントは、ダウンストリームの音声認識タスクで非常に簡単にファインチューニングできます。要するに、事前学習済みのWav2Vec2のチェックポイントをファインチューニングする方法は次のとおりです。 事前学習チェックポイントの上にはじめに単一のランダムに初期化された線形層が積み重ねられ、生のオーディオ入力を文字のシーケンスに分類するために訓練されます。これは以下のように行います。 生のオーディオからオーディオ表現を抽出する(CNN層を使用する) オーディオ表現のシーケンスをトランスフォーマーレイヤーのスタックで処理する 処理されたオーディオ表現を出力文字のシーケンスに分類する 以前のオーディオ分類モデルでは、分類されたオーディオフレームのシーケンスを一貫した転写に変換するために、追加の言語モデル(LM)と辞書が必要でした。Wav2Vec2のアーキテクチャはトランスフォーマーレイヤーに基づいているため、各処理されたオーディオ表現は他のすべてのオーディオ表現から文脈を得ることができます。さらに、Wav2Vec2はファインチューニングにCTCアルゴリズムを利用しており、変動する「入力オーディオの長さ」と「出力テキストの長さ」の比率の整列の問題を解決しています。 文脈化されたオーディオ分類と整列の問題がないため、Wav2Vec2には受け入れ可能なオーディオ転写を得るために外部の言語モデルや辞書は必要ありません。 公式論文の付録Cに示されているように、Wav2Vec2は言語モデルを使用せずにLibriSpeechで印象的なダウンストリームのパフォーマンスを発揮しています。ただし、付録からも明らかなように、Wav2Vec2を10分間の転写済みオーディオのみで訓練した場合、言語モデルと組み合わせると特に改善が見られます。 最近まで、🤗 TransformersライブラリにはファインチューニングされたWav2Vec2と言語モデルを使用してオーディオファイルをデコードするための簡単なユーザーインターフェースがありませんでした。幸いにも、これは変わりました。🤗…
KiliとHuggingFace AutoTrainを使用した意見分類
イントロダクション ユーザーのニーズを理解することは、ユーザーに関連するビジネスにおいて重要です。しかし、それには多くの労力と分析が必要であり、非常に高価です。ならば、Machine Learningを活用しませんか?Auto MLを使用することでコーディングを大幅に削減できます。 この記事では、HuggingFace AutoTrainとKiliを活用して、テキスト分類のためのアクティブラーニングパイプラインを構築します。Kiliは、品質の高いトレーニングデータ作成を通じて、データ中心のアプローチを強力にサポートするプラットフォームです。協力的なデータ注釈ツールとAPIを提供し、信頼性のあるデータセット構築とモデルトレーニングの素早い反復を可能にします。アクティブラーニングとは、データセットにラベル付けされたデータを追加し、モデルを反復的に再トレーニングするプロセスです。そのため、終わりのない作業であり、人間がデータにラベルを付ける必要があります。 この記事の具体的なユースケースとして、Google PlayストアのVoAGIのユーザーレビューを使用してパイプラインを構築します。その後、構築したパイプラインでレビューをカテゴリ分類します。最後に、分類されたレビューに感情分析を適用します。その結果を分析することで、ユーザーのニーズと満足度を理解することが容易になります。 HuggingFaceを使用したAutoTrain 自動化されたMachine Learningは、Machine Learningパイプラインの自動化を指す用語です。データクリーニング、モデル選択、ハイパーパラメータの最適化も含まれます。🤗 transformersを使用して自動的にハイパーパラメータの検索を行うことができます。ハイパーパラメータの最適化は困難で時間のかかるプロセスです。 transformersや他の強力なAPIを使用してパイプラインを自分自身で構築することもできますが、AutoTrainを完全に自動化することも可能です。AutoTrainは、transformers、datasets、inference-apiなどの多くの強力なAPIを基に構築されています。 データのクリーニング、モデルの選択、ハイパーパラメータの最適化のステップは、すべてAutoTrainで完全に自動化されています。このフレームワークをフルに活用することで、特定のタスクに対してプロダクションレディのSOTAトランスフォーマーモデルを構築することができます。現在、AutoTrainはバイナリとマルチラベルのテキスト分類、トークン分類、抽出型質問応答、テキスト要約、テキストスコアリングをサポートしています。また、英語、ドイツ語、フランス語、スペイン語、フィンランド語、スウェーデン語、ヒンディー語、オランダ語など、多くの言語もサポートしています。AutoTrainでサポートされていない言語の場合、カスタムモデルとカスタムトークナイザを使用することも可能です。 Kili Kiliは、データ中心のビジネス向けのエンドツーエンドのAIトレーニングプラットフォームです。Kiliは、最適化されたラベリング機能と品質管理ツールを提供し、データを管理するための便利な手段を提供します。画像、ビデオ、テキスト、PDF、音声データを素早く注釈付けできます。GraphQLとPythonの強力なAPIも備えており、データ管理を容易にします。 オンラインまたはオンプレミスで利用可能であり、コンピュータビジョンやNLP、OCRにおいてモダンなMachine Learning技術を実現することができます。テキスト分類、固有表現認識(NER)、関係抽出などのNLP / OCRタスクをサポートしています。また、オブジェクト検出、画像転写、ビデオ分類、セマンティックセグメンテーションなどのコンピュータビジョンタスクもサポートしています。 Kiliは商用ツールですが、Kiliのツールを試すために無料のデベロッパーアカウントを作成することもできます。料金については、価格ページから詳細を確認できます。 プロジェクト モバイルアプリケーションについての洞察を得るために、レビューの分類と感情分析の例を取り上げます。…
BLOOMトレーニングの技術背後
近年、ますます大規模な言語モデルの訓練が一般的になってきました。これらのモデルがさらなる研究のために公開されていない問題は頻繁に議論されますが、そのようなモデルを訓練するための技術やエンジニアリングについての隠された知識は滅多に注目されません。本記事では、1760億パラメータの言語モデルBLOOMを例に、そのようなモデルの訓練の裏側にあるハードウェアとソフトウェアの技術とエンジニアリングについて、いくつかの光を当てることを目指しています。 しかし、まず、この素晴らしい1760億パラメータモデルの訓練を可能にするために貢献してくれた企業や主要な人物やグループに感謝したいと思います。 その後、ハードウェアのセットアップと主要な技術的な構成要素について説明します。 以下はプロジェクトの要約です: 人々 このプロジェクトは、Hugging Faceの共同創設者でありCSOのThomas Wolf氏が考案しました。彼は巨大な企業と競争し、単なる夢だったものを実現し、最終的な結果をすべての人にアクセス可能にすることで、最も多くの人々にとっては夢であったものを実現しました。 この記事では、モデルの訓練のエンジニアリング側に特化しています。BLOOMの背後にある技術の最も重要な部分は、私たちにコーディングと訓練の助けを提供してくれた専門家の人々と企業です。 感謝すべき6つの主要なグループがあります: HuggingFaceのBigScienceチームは、数人の専任の従業員を捧げ、訓練を始めから終わりまで行うための方法を見つけるために、Jean Zayの計算機を超えるすべてのインフラストラクチャを提供しました。 MicrosoftのDeepSpeedチームは、DeepSpeedを開発し、後にMegatron-LMと統合しました。彼らの開発者たちはプロジェクトのニーズに多くの時間を費やし、訓練前後に素晴らしい実践的なアドバイスを提供しました。 NVIDIAのMegatron-LMチームは、Megatron-LMを開発し、私たちの多くの質問に親切に答えてくれ、一流の実践的なアドバイスを提供しました。 ジャン・ゼイのスーパーコンピュータを管理しているIDRIS / GENCIチームは、計算リソースをプロジェクトに寄付し、優れたシステム管理のサポートを提供しました。 PyTorchチームは、このプロジェクトのために基礎となる非常に強力なフレームワークを作成し、訓練の準備中に私たちをサポートし、複数のバグを修正し、PyTorchコンポーネントの使いやすさを向上させました。 BigScience Engineeringワーキンググループのボランティア プロジェクトのエンジニアリング側に貢献してくれたすべての素晴らしい人々を全て挙げることは非常に困難なので、Hugging Face以外のいくつかの主要な人物を挙げます。彼らはこのプロジェクトのエンジニアリングの基盤となりました。 Olatunji Ruwase、Deepak…
Hugging Face TransformersとHabana Gaudiを使用して、BERTを事前に学習する
このチュートリアルでは、Habana GaudiベースのDL1インスタンスを使用してBERT-baseをゼロから事前トレーニングする方法を学びます。Gaudiのコストパフォーマンスの利点を活用するためにAWSで使用します。Hugging Face Transformers、Optimum Habana、およびDatasetsライブラリを使用して、マスクされた言語モデリングを使用してBERT-baseモデルを事前トレーニングします。これは、最初のBERT事前トレーニングタスクの一つです。始める前に、ディープラーニング環境をセットアップする必要があります。 コードを表示する 以下のことを学びます: データセットの準備 トークナイザのトレーニング データセットの前処理 Habana Gaudi上でBERTを事前トレーニングする 注意:ステップ1から3は、CPUを多く使用するタスクのため、異なるインスタンスサイズで実行することができます/すべきです。 要件 始める前に、以下の要件を満たしていることを確認してください DL1インスタンスタイプのクオータを持つAWSアカウント AWS CLIがインストールされていること AWS IAMユーザーがCLIで構成され、ec2インスタンスの作成と管理の権限を持っていること 役立つリソース Hugging Face TransformersとHabana…
RWKVとは、トランスフォーマーの利点を持つRNNの紹介です
ChatGPTとチャットボットを活用したアプリケーションは、自然言語処理(NLP)の領域で注目を集めています。コミュニティは、アプリケーションやユースケースに強力で信頼性の高いオープンソースモデルを常に求めています。これらの強力なモデルの台頭は、Vaswaniらによって2017年に最初に紹介されたトランスフォーマーベースのモデルの民主化と広範な採用によるものです。これらのモデルは、それ以降のSoTA NLPモデルである再帰型ニューラルネットワーク(RNN)ベースのモデルを大幅に上回りました。このブログ投稿では、RNNとトランスフォーマーの両方の利点を組み合わせた新しいアーキテクチャであるRWKVの統合を紹介します。このアーキテクチャは最近、Hugging Face transformersライブラリに統合されました。 RWKVプロジェクトの概要 RWKVプロジェクトは、Bo Peng氏が立ち上げ、リードしています。Bo Peng氏は積極的にプロジェクトに貢献し、メンテナンスを行っています。コミュニティは、公式のdiscordチャンネルで組織されており、パフォーマンス(RWKV.cpp、量子化など)、スケーラビリティ(データセットの処理とスクレイピング)、および研究(チャットの微調整、マルチモーダルの微調整など)など、さまざまなトピックでプロジェクトの成果物を常に拡張しています。RWKVモデルのトレーニングに使用されるGPUは、Stability AIによって寄付されています。 公式のdiscordチャンネルに参加し、RWKVの基本的なアイデアについて詳しく学ぶことで、参加することができます。以下の2つのブログ投稿で詳細を確認できます:https://johanwind.github.io/2023/03/23/rwkv_overview.html / https://johanwind.github.io/2023/03/23/rwkv_details.html トランスフォーマーアーキテクチャとRNN RNNアーキテクチャは、データのシーケンスを処理するための最初の広く使用されているニューラルネットワークアーキテクチャの1つであり、固定サイズの入力を取る従来のアーキテクチャとは異なります。RNNは、現在の「トークン」(つまり、データストリームの現在のデータポイント)、前の「状態」を入力として受け取り、次のトークンと次の状態を予測します。新しい状態は、次のトークンの予測を計算するために使用され、以降も同様に続きます。RNNは異なる「モード」でも使用できるため、Andrej Karpathy氏のブログ投稿で示されているように、1対1(画像分類)、1対多(画像キャプション)、多対1(シーケンス分類)、多対多(シーケンス生成)など、さまざまなシナリオでRNNを適用することが可能です。 RNNは、各ステップで予測を計算するために同じ重みを使用するため、勾配消失の問題により長距離のシーケンスに対する情報の記憶に苦労します。この制限に対処するために、LSTMやGRUなどの新しいアーキテクチャが導入されましたが、トランスフォーマーアーキテクチャはこの問題を解決するためにこれまでで最も効果的なものとなりました。 トランスフォーマーアーキテクチャでは、入力トークンは自己注意モジュールで同時に処理されます。トークンは、クエリ、キー、値の重みを使用して異なる空間に線形にプロジェクションされます。結果の行列は、アテンションスコアを計算するために直接使用され、その後値の隠れ状態と乗算されて最終的な隠れ状態が得られます。この設計により、アーキテクチャは長距離のシーケンスの問題を効果的に緩和し、RNNモデルと比較して推論とトレーニングの速度も高速化します。 トランスフォーマーアーキテクチャは、トレーニング中に従来のRNNおよびCNNに比べていくつかの利点があります。最も重要な利点の1つは、文脈的な表現を学習できる能力です。RNNやCNNとは異なり、トランスフォーマーアーキテクチャは単語ごとではなく、入力シーケンス全体を処理します。これにより、シーケンス内の単語間の長距離の依存関係を捉えることができます。これは、言語翻訳や質問応答などのタスクに特に有用です。 推論中、RNNは速度とメモリ効率の面でいくつかの利点があります。これらの利点には、単純さ(行列-ベクトル演算のみが必要)とメモリ効率(推論中にメモリ要件が増えない)が含まれます。さらに、現在のトークンと状態にのみ作用するため、コンテキストウィンドウの長さに関係なく計算速度が同じままです。 RWKVアーキテクチャ RWKVは、AppleのAttention Free Transformerに触発されています。アーキテクチャは注意深く簡素化され、最適化されており、RNNに変換することができます。さらに、TokenShiftやSmallInitEmbなどのトリックが追加されています(公式のGitHubリポジトリのREADMEにトリックのリストが記載されています)。これにより、モデルのパフォーマンスがGPTに匹敵するように向上しています。現在、トレーニングを14Bパラメータまでスケーリングするためのインフラストラクチャがあり、RWKV-4(本日の最新バージョン)では数値の不安定性など、いくつかの問題が反復的に修正されました。 RNNとトランスフォーマーの組み合わせとしてのRWKV…
ジョシュ・フィースト、CogitoのCEO兼共同創業者 – インタビューシリーズ
ジョシュ・フィーストは、CogitoのCEO兼共同創業者であり、感情と会話AIを組み合わせた革新的なプラットフォームを提供するエンタープライズですこのプラットフォームは、リアルタイムのコーチングやガイダンスをコンタクトセンターエージェントに提供し、スーパーバイザーにはどこからでもチームのライブ会話を見ることができるだけでなく、顧客と従業員のエクスペリエンスを継続的にモニタリングしますCogitoの物語はここから始まります...
2023年のMLOpsの景色:トップのツールとプラットフォーム
2023年のMLOpsの領域に深く入り込むと、多くのツールやプラットフォームが存在し、モデルの開発、展開、監視の方法を形作っています総合的な概要を提供するため、この記事ではMLOpsおよびFMOps(またはLLMOps)エコシステムの主要なプレーヤーについて探求します...
ロボキャット:自己改善型ロボティックエージェント
ロボットは私たちの日常生活の一部として急速になっていますが、彼らはしばしば特定のタスクをうまく実行するためにのみプログラムされています最近のAIの進歩を活用することで、より多くの方法で助けることができるロボットが可能になるかもしれませんが、一般的な用途のロボットの構築には、現実世界のトレーニングデータを収集するために必要な時間の制約があり、進展が遅れています私たちの最新の論文では、自己改善型のAIエージェントであるロボキャットを紹介していますロボキャットは、異なるアームでさまざまなタスクを実行する方法を学び、その後、新しいトレーニングデータを自己生成して技術を向上させるのです
Amazon SageMaker Jumpstartを使用して、車両フリートの故障確率を予測します
予測保全は自動車産業において重要ですなぜなら、突発的な機械故障や運用を妨げる事後処理の活動を回避することができるからです車両の故障を予測し、メンテナンスや修理のスケジュールを立てることにより、ダウンタイムを減少させ、安全性を向上させ、生産性を向上させることができますもし、車両の故障を引き起こす一般的な領域にディープラーニングの技術を適用できたら、どうでしょうか
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.