Learn more about Search Results 18 - Page 17
- You may be interested
- 高パフォーマンスなリアルタイムデータモ...
- 「データ分析の最先端にいるための私のイ...
- 2024年の予測17:RAG to RichesからBeatle...
- 拡散モデルライブイベント
- 「作者の正体を暴く:AIか人間か?IBMの革...
- AIは宇宙からメタンの噴出を検出する
- プロンプトエンジニアリングにおける並列...
- 「AIデザインスタジオ、OpenAIによってグ...
- データを持っていますか?SMOTEとGANが合...
- 「Snowflakeで生産性を向上させるためのト...
- ドックスからコードの生成には、LLMsを使...
- 「Pymcと統計モデルを記述するための言語...
- トップ投稿 7月31日〜8月6日:ChatGPTを忘...
- インタラクティブな知能の模倣
- 裁判官がChatGPTを法的判決に使用すること...
「Amazon SageMaker Data Wranglerを使用して、生成型AIのデータ準備をシンプルにする」
生成型人工知能(生成型AI)モデルは、高品質のテキスト、画像、およびその他のコンテンツを生成する能力を見せていますしかし、これらのモデルは、最大の可能性を発揮するためには大量のクリーンで構造化されたトレーニングデータが必要ですほとんどの現実世界のデータはPDFなどの非構造化形式で存在しており、効果的に使用するためには前処理が必要ですIDCによると、[…]
「勉強ルーティンにおけるワードウォールの創造的な活用法トップ10」
「ワードウォールは、勉強を効果的に進め、学習成果を高めるための素晴らしいツールです通常は小学校の教室で使用されますが、ワードウォールは全ての年齢や学問分野に適応することができます試験で優秀な成績を収めたい学生や語彙を拡充したい方にとって、以下に10のクリエイティブな方法を紹介します... スタディルーティンでワードウォールを活用するためのトップ10のクリエイティブな方法詳細を読む »」
「InVideoレビュー:2023年11月の最高のAIビデオジェネレーター?」
「最も包括的なInVideoのレビューをお探しですか?最高のAIビデオジェネレーターについての情報を入手し、詳細はこちらでご確認ください」
「10 種類の最高の AI ファッションデザイナーツール」
「常に進化するファッションの世界では、創造性とテクノロジーの融合がデザイナーに前例のない可能性を開拓しています最新の革命は人工知能(AI)によるもので、ファッションの考え方、創り方、カスタマイズの方法を変えていますAIは単なるツールではなく、大胆に挑戦する人々に無限の可能性を提供する創造的なパートナーなのです […]」
『デイリースタンドアップで時間を無駄にしています』
「デイリースタンドアップは、中規模の製品エンジニアリングチームに年間6桁の金額をかけさせるので、必ず効果を上げる必要がありますこうすればできると思います」
「LLM SaaSのためのFastAPIテンプレートPart 2 — CeleryとPg-vector」
このブログ投稿は、LLM SaaSシリーズのFastAPI + Supabaseテンプレートの一部であり、Part 1(Auth and File Upload)で紹介された概念を拡張しています以下のイラストは、Celeryワーカーの動作を示しています...
このAI論文では、「Lightning Cat」というスマート契約の脆弱性検出ツールを紹介していますこれは、深層学習をベースにしたツールです
スマートコントラクトは、分散型アプリケーションの開発においてブロックチェーン技術で重要な役割を果たしています。スマートコントラクトの脆弱性は、潜在的な財務損失やシステムのクラッシュといった重大な脅威をもたらします。静的解析ツールなど従来の脆弱性検出方法は、事前に定義されたルールに依存するため、偽陽性や偽陰性が頻繁に発生します。この問題に対応するため、中国のSalus Securityの研究チームが「Lightning Cat」という新しいAIソリューションを導入し、スマートコントラクトの脆弱性検出に深層学習技術を活用しています。 論文の要点は3つの部分に分けられます。まず、スマートコントラクトの脆弱性検出に深層学習手法を活用したLightning Catソリューションの紹介です。次に、重要なデータ前処理手法が提案されており、CodeBERTを通じた意味的な特徴の抽出に重点が置かれています。最後に、実験結果はOptimised-CodeBERTが他のモデルより優れた性能を示していることを示しています。 研究者たちは、静的解析ツールの制限に取り組み、Lightning Catフレームワーク内に3つの最適化された深層学習モデル(Optimised-CodeBERT、LSTM、CNN)を提案しています。CodeBERTモデルは、スマートコントラクトの脆弱性検出の特定のタスクに対応するためにファインチューニングされた、事前学習済みのトランスフォーマーベースのモデルです。意味解析能力を向上させるために、研究者たちはデータ前処理でCodeBERTを使用し、コードの構文と意味に対するより正確な理解を可能にしています。 実験はSolidiFIベンチマークデータセットを使用して行われました。これには、7つの異なるタイプの脆弱性が含まれた9369の脆弱なコントラクトが注入されています。結果は、Optimised-CodeBERTモデルが優れた93.53%のf1スコアを達成し、脆弱性の特徴を正確に抽出する重要性が示されています。データ前処理におけるCodeBERTの使用は、構文と意味のより正確な把握に貢献しています。 研究者たちは、Lightning Catを静的解析ツールを超えるソリューションと位置付け、深層学習を活用して適応し続けることを強調しています。データ前処理においてCodeBERTが効果的に使用され、構文と意味の両方を捕捉する能力が評価されています。Optimised-CodeBERTモデルの優れたパフォーマンスは、脆弱性の特徴の抽出における精度によります。 結論として、研究者たちはスマートコントラクトの脆弱性検出が財務損失を防止し、ユーザーの信頼を保つ上で重要な役割を果たすことを主張しています。深層学習に基づくアプローチと最適化されたモデルを備えたLightning Catは、精度と適応性の面で既存のツールを凌駕する有望なソリューションとして浮上しています。
中国の研究者が、ビデオ・LLaVAを紹介します:シンプルでパワフルな大規模ビジュアル言語ベースラインモデル
北京大学、彭城实验室、北京大学深圳研究生院和中山大学的研究人员引入了大规模视觉语言模型(LVLM)方法,即Video-LLaVA,将视觉表示统一到语言特征空间中。与现有的将图像和视频分别编码的方法不同,Video-LLaVA通过解决投影过程中的错位问题实现了统一的LVLM。这个简单而强大的模型在九个图像数据集上超越了基准,在五个数据集和四个工具包上的图像问答中表现出色。 Video-LLaVA将图像和视频集成到一个特征空间中,改进了多模态交互。它在各种图像基准测试中优于Video-ChatGPT,并在图像问答方面表现出色。在视频理解方面,Video-LLaVA始终超过Video-ChatGPT,并且在多个视频数据集上表现出色,超过了最先进的Chat-UniVi。利用LLM的推理能力,Video-LLaVA使用来自LanguageBind和ViT-L14的Vicuna-7B v1.5和视觉编码器进行训练。 为解决现有方法中将图像和视频分别编码的错位挑战,引入了Video-LLaVA,一种统一的视觉语言模型。该模型在投影之前使图像和视频的视觉表示对齐,减轻了LLMs学习多模态交互的问题。Video-LLaVA在各种图像和视频基准测试中超过了先进的LVLMs和Video-ChatGPT,展示了在理解和回应人类提供的指令方面的改进性能。该方法强调了在投影之前将视觉特征对齐到统一空间的好处,以增强多模态交互学习。 Video-LLaVA在投影之前将图像和视频的视觉表示对齐到一个统一的特征空间。它使用Vicuna-7B v1.5作为语言模型,使用来自LanguageBind的视觉编码器,由ViT-L14初始化。训练过程涉及将图像调整大小和裁剪为224×224。利用来自CC3M的55.8万个LAION-CC-SBU图像文本对于预训练。指导数据集来自各个地方,包括LLaVA v1.5的66.5万个图像文本指导数据集和Video-ChatGPT的10万个视频文本指导数据集。 Video-LLaVA在九个图像基准测试中表现出色,分别超过了Video-ChatGPT在MSRVTT、MSVD、TGIF和ActivityNet上的性能,并分别提高了5.8%、9.9%、18.6%和10.1%。它在89个图像基准测试中进行了评测,并在图像问答方面超越了InstructBLIP-7B。与更强大的LVLMs相竞争,它在VisWiz上超过了InstructBLIP-13B的14.7。Video-LLaVA显著提高了四个数据集上的视频问答能力,展示了通过统一的视觉表示理解和学习图像和视频的能力。 总之,Video-LLaVA是一种非常大的视觉语言模型,能够有效解决错位问题,并在不同的图像基准测试上表现更好。它对图像和视频进行联合训练,提高了其能力,使其能够超越专门为图像或视频设计的专家模型。该模型在统一的视觉概念理解和图像问答基准测试中表现出色,展示了其卓越的能力。 未来的研究可以探索在投影之前的高级对齐技术,以增强多模态交互中的LVLMs。应该研究更多种对图像和视频进行统一分词的替代方法,以解决错位挑战。通过对附加基准测试和数据集上的Video-LLaVA进行评估可以评估其可泛化性。与更大的语言模型进行比较可以阐明可扩展性和潜在增强的可能性。提高Video-LLaVA的计算效率,并研究联合训练对LVLM性能的影响,是进一步探索的方向。
「Amazon Personalizeと創造的AIを活用して、ハイパーカスタマイズされたお客様体験を実現しましょう」
今日は、Amazon Personalizeと生成AIを使用して個別の顧客体験を向上させるための3つの新製品を発表することをお知らせいたします管理されたソリューションを探している場合、または独自のものを構築したい場合でも、これらの新しい機能を使用して、旅を推進することができますAmazon Personalizeは、完全に管理された機械学習(ML)サービスで、...
「包括的な時系列探索的分析」
「ここにはタイムスタンプでインデックスされたデータセットがありますデータはストレージの需要と供給に関するものかもしれませんが、あなたは戦略的な製品の適切な補充間隔を予測することが求められています...」
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.