Learn more about Search Results 子供 - Page 17

「プライバシーおよび著作権法違反に対するOpenAIおよびMicrosoftを提訴する弁護士」

ChatGPTの創設者であるOpenAIとMicrosoftは、プライバシーと著作権法の違反の疑いについて集団訴訟を受けていますプライバシーやその他の問題に関する懸念は、今年OpenAIのレーダーにゆっくりと入り込んできましたが、今では法律事務所がAIのパイオニアたちに立ち向かうことを決めたようです話している最中に...

「PandasAIの包括的ガイド」

イントロダクション 生成AIと大規模言語モデル(LLM)は、人工知能(AI)と機械学習(ML)に新たな時代をもたらしました。これらの大規模言語モデルは、さまざまなドメインでさまざまなアプリケーションで使用され、AIに対する新たな視点を開いています。これらのモデルは、インターネット上の膨大なテキストデータでトレーニングされ、人間のような方法でテキストを生成することができます。最もよく知られているLLMの例は、OpenAIによって開発されたChatGPTです。それはオリジナルのコンテンツの作成からコードの書き込みまでさまざまなタスクを実行することができます。この記事では、LLMの1つであるPandasAIの一つの応用について説明します。PandasAIガイドは、Pythonの人気のあるPandasライブラリとOpenAIのGPTの融合と考えることができます。それはコードをあまり書かずにデータから素早く洞察を得るために非常に強力です。 学習目標 PandasとPandasAIの違いを理解する PandasAIとデータ分析と可視化の役割 PandasAIを使用して完全な探索的データ分析ワークフローを構築する 明確で簡潔で具体的なプロンプトの書き方の重要性を理解する PandasAIの制限を理解する この記事は、Data Science Blogathonの一部として公開されました。 PandasAI PandasAIは、データ分析と可視化のタスクをより簡単にするための新しいツールです。PandasAIはPythonのPandasライブラリで構築され、その作業には生成AIとLLMが使用されています。Pandasとは異なり、データを手動で分析および操作する必要がなく、PandasAIはテキストプロンプトを提供するだけでデータから洞察を生成することができます。それはあなたの助手に指示を与えるようなものであり、熟練して堪能な人間ではなく、人間のように情報を理解し処理する機械です。 この記事では、コードの例と説明を交えながら、PandasAIを使用した完全なデータ分析および可視化プロセスをレビューします。それでは、始めましょう。 OpenAIアカウントの設定とAPIキーの抽出 PandasAIライブラリを使用するには、OpenAIアカウント(既に持っていない場合)を作成し、APIキーを使用する必要があります。以下の手順で行うことができます。 https://platform.openai.comにアクセスし、個人アカウントを作成します。 アカウントにサインインします。 右上の個人をクリックします。 ドロップダウンメニューからAPIキーの表示を選択します。 新しいシークレットキーを作成します。 シークレットキーをコピーし、コンピュータ上の安全な場所に保存します。 上記の手順に従っていれば、プロジェクトで生成AIの力を活用する準備が整っています。 PandasAIのインストール…

PlotlyとPandas:効果的なデータ可視化のための力の結集

昔々、私たちの多くがこの問題にぶつかったことがありましたもし才能がないか、前もってデザインのコースを受講したことがなければ、視覚的なものを作ることはかなり困難で時間がかかるかもしれません…

「ChatGPTコードインタプリタを使用して、人道支援データの非構造化Excelテーブルを分析する」

新しい実験的な機能「コードインタプリター」は、ChatGPTの使用の一環としてPythonコードの生成と実行をネイティブにサポートしますデータエンジニアリングを行うためには大きな潜在能力を示しています

ジェイソン・アーボン:「百万年後、超パワフルなコンピュータは我々の時代のテスターたちを称えるでしょう」

「Jason Arbonと一緒に、テストにおけるAIの使用、いくぶん不公平なマニュアルQA vs. 自動化QAの闘い、新しいテクノロジーの急速な発展によってテスターが直面するリスクなどについて議論します」

ジェイソン・アーボン:「100万年後、超強力なコンピュータは私たちの時代のテスターを尊重するでしょう」

「AIのテストにおける利用、やや公平でないマニュアルQA vs. 自動化QAの葛藤、指数関数的に発展する新しい技術によるテスターのリスクなど、Jason Arbon氏との話し合いを行いました」

「マイクロソフトのシニアデータサイエンティストの成功ストーリー」

イントロダクション 現代のデジタル時代において、データの力は否応なく認められており、その潜在能力を引き出すスキルを持つ人々が技術の未来を形作る中でリードしています。その中でも、データサイエンスの領域において卓越した人物、ニルマル氏は、世界でも屈指のテクノロジー企業であるマイクロソフトでシニアデータサイエンティストとして活躍しているビジョンを持つ人物です。 運命に挑み、才能と献身の結晶であるニルマル氏は、謙虚な出自から始まる変革の旅に乗り出し、マイクロソフトでシニアデータサイエンティストとしてのキャリアの頂点に上り詰めました。彼の急速な昇進は、データサイエンティスト志望者だけでなく、夢と偉大さを実現するための決意を持つすべての人々にとっても、インスピレーションを与える成功物語となっています。 この成功物語の記事では、ニルマル氏のキャリアに焦点を当て、彼の非凡なキャリアを形作った重要なマイルストーン、課題、勝利を追跡します。彼が主導した画期的なプロジェクト、もたらした変革の影響、そして彼が学んだ貴重な教訓を探求します。ニルマル氏の物語を通じて、データサイエンスの絶えず進化する世界で成功するために必要な特性とマインドセットを発見します。 会話を始めましょう! AV: キャリアの軌跡、教育の背景を強調し、最初のデータサイエンティストの仕事を得るのにどのように役立ちましたか? ニルマル氏: 私のキャリアの軌跡は常に一直線ではありませんでした。私たち一人ひとりにはそれぞれの物語があり、それらがすべて興味深いことでしょう。私の物語はこちらです。私はネパールでITエンジニアの学士号を取得しました。2007年にアメリカ合衆国に移住し、修士号を取得しました。修士課程を修了した後、私は米国陸軍に参加しました。はい、非常に普通ではないと思われるかもしれません。2009年ごろのアメリカでの大不況(ちょうど私の卒業年でもありました)により、特に留学生にとっては就職市場が非常に悪い状況でした。米国陸軍による特別なパイロットプログラムがあり、私は必要な手続きをすべて経て軍務員になることができました。子供の頃から軍に入隊することに対する情熱がありました。それを実現する方法です。 軍務中、私はMBAを取得しました。2014年、最初の兵役契約が終了した後、私は米国陸軍を退役しました。同年、私は初めてのデータ役職として、海軍省の連邦政府職員としてサイバーセキュリティアナリストとしての仕事を得ました。この仕事をしている間にデータサイエンスの修士号を取得しました。データアナリストとしての経験を積み、学術的な資格とデータサイエンスのスキルを身につけた後、2018年にウェルズ・ファーゴ銀行でデータサイエンティストの役職で私の最初の役職に就きました。それ以来、データサイエンスに従事しており、現在はマイクロソフトのシニアデータサイエンティストとして働いています。 AV: データを使用して実世界の問題を解決し、ビジネスや製品戦略に与えた影響について教えていただけますか? ニルマル氏: たくさんの例があります。まず、私たちはデータサイエンティストの役職に就かなくても、データの問題を解決するために取り組むことができます。そんな誤解があります。私たちはデータアナリスト、データエンジニア、ビジネスアナリストなど、データを扱うさまざまな役職で働くことができます。 私は主にサイバーセキュリティの領域で働いています。私たちの主な焦点の2つは、調査と検出です。サイバーセキュリティの問題に取り組む際に非常にポピュラーな問題の1つは、異常検知です。私はデータサイエンスチームで異常検知システムを構築し、セキュリティアナリストが注目すべきイベント/アラートに費やす時間を節約するのを助けました。その影響は彼らの時間とリソースの節約にあります。 AV: データサイエンスを使用して解決した最も困難な問題は何でしたか?問題にどのように取り組みましたか?結果はどうでしたか? ミスター・ニルマル: 私が一番難しいと感じる問題はまだ解決されていないと言ってもいいでしょう。私たちは非常に革新的なAIの世界に生きているため、敵対者が今まで以上に最先端のツールを持っていることを常に意識しなければなりません。しかし、興味深い問題をひとつ挙げるとすれば、ユーザーの行動分析、またはユーザーエンティティの行動分析とも呼ばれるもので、業界では広く知られているUEBAと呼ばれるものです。UEBAは、通常の基準から逸脱するユーザーのアクティビティを特定することで脅威を発見するタイプのサイバーセキュリティ機能です。 簡単な例: A地点からよくログインしているユーザーが、突然B地点からログインしているアクティビティが観測されます。これは旅行に関連するものかもしれませんが、それでも通常の行動から逸脱しているため、正常性対悪意性を確認するために調査する必要があります。UEBAの最も難しい部分は、基準を理解し作成することです。 データ駆動の洞察 AV: テクニカルでない利害関係者に複雑なデータ駆動の洞察を伝える必要があった場面のストーリーを共有していただけますか?彼らが洞察とビジネスへの影響を理解したことを確認するためにどのような工夫をしましたか?…

テキストの生成方法:トランスフォーマーを使用した言語生成のための異なるデコーディング方法の使用方法

はじめに 近年、大規模なトランスフォーマーベースの言語モデル(例えば、OpenAIの有名なGPT2モデル)が数百万のウェブページを学習することで、オープンエンドの言語生成に対する関心が高まっています。条件付きのオープンエンドの言語生成の結果は印象的です。例えば、ユニコーンに関するGPT2、XLNet、CTRLでの制御言語生成などです。改良されたトランスフォーマーアーキテクチャや大量の非教示学習データに加えて、より良いデコーディング手法も重要な役割を果たしています。 このブログ記事では、異なるデコーディング戦略の概要と、さらに重要なことに、人気のあるtransformersライブラリを使ってそれらを簡単に実装する方法を紹介します! 以下のすべての機能は、自己回帰言語生成に使用することができます(ここでは復習です)。要するに、自己回帰言語生成は、単語のシーケンスの確率分布を条件付き次の単語の分布の積として分解できるという仮定に基づいています: P(w1:T∣W0)=∏t=1TP(wt∣w1:t−1,W0) ,with w1:0=∅, P(w_{1:T} | W_0 ) = \prod_{t=1}^T P(w_{t} | w_{1: t-1}, W_0) \text{ ,with } w_{1: 0} = \emptyset, P(w1:T​∣W0​)=t=1∏T​P(wt​∣w1:t−1​,W0​) ,with w1:0​=∅,…

Hugging Face Transformers と Amazon SageMaker を使用して、GPT-J 6B を推論のためにデプロイします

約6ヶ月前の今日、EleutherAIはGPT-3のオープンソースの代替となるGPT-J 6Bをリリースしました。GPT-J 6BはEleutherAIs GPT-NEOファミリーの6,000,000,000パラメータの後継モデルであり、テキスト生成のためのGPTアーキテクチャに基づくトランスフォーマーベースの言語モデルです。 EleutherAIの主な目標は、GPT-3と同じサイズのモデルを訓練し、オープンライセンスの下で一般の人々に提供することです。 過去6ヶ月間、GPT-Jは研究者、データサイエンティスト、さらにはソフトウェア開発者から多くの関心を集めてきましたが、実世界のユースケースや製品にGPT-Jを本番環境に展開することは非常に困難でした。 Hugging Face Inference APIやEleutherAIs 6b playgroundなど、製品ワークロードでGPT-Jを使用するためのホステッドソリューションはいくつかありますが、自分自身の環境に簡単に展開する方法の例は少ないです。 このブログ記事では、Amazon SageMakerとHugging Face Inference Toolkitを使用して、数行のコードでGPT-Jを簡単に展開する方法を学びます。これにより、スケーラブルで信頼性の高いセキュアなリアルタイムの推論が可能な通常サイズのNVIDIA T4(約500ドル/月)のGPUインスタンスを使用します。 しかし、それに入る前に、なぜGPT-Jを本番環境に展開するのが困難なのかを説明したいと思います。 背景 6,000,000,000パラメータモデルの重みは、約24GBのメモリを使用します。float32でロードするためには、少なくとも2倍のモデルサイズのCPU RAMが必要です。初期重みのために1倍、チェックポイントのロードのために1倍です。したがって、GPT-Jをロードするには少なくとも48GBのCPU RAMが必要です。 モデルをよりアクセス可能にするために、EleutherAIはfloat16の重みを提供しており、transformersには大規模な言語モデルのロード時のメモリ使用量を削減する新しいオプションがあります。これらすべてを組み合わせると、モデルのロードにはおおよそ12.1GBのCPU…

深層強化学習の概要

Hugging FaceとのDeep Reinforcement Learningクラスの第1章 ⚠️ この記事の新しい更新版はこちらでご覧いただけます 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はDeep Reinforcement Learningクラスの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご確認ください。 ⚠️ この記事の新しい更新版はこちらでご覧いただけます 👉 https://huggingface.co/deep-rl-course/unit1/introduction この記事はDeep Reinforcement Learningクラスの一部です。初心者からエキスパートまでの無料コースです。シラバスはこちらをご確認ください。 人工知能の最も魅力的なトピックへようこそ: Deep Reinforcement Learning(深層強化学習) Deep RLは、エージェントが行動を実行し、結果を観察することで、環境内でどのように振る舞うかを学習する機械学習の一種です。…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us