Learn more about Search Results フ - Page 17
- You may be interested
- Pythonを使用したビデオ内の深さに配慮し...
- 時系列データのためのPandas
- 「グラフデータベースを使用してリアルタ...
- 「Auto-GPTに会ってください:GPT-4などの...
- Google AIは、オーディオ、ビデオ、テキス...
- 企業がOpenAIのChatGPTに類似した自社の大...
- 2023年のトップビジネスインテリジェンス...
- メンテナンス・プロセスの標準化における...
- 「データガバナンスチームを改善するため...
- CleanLabを使用してデータセットのラベル...
- 「Neo4jにおける非構造化テキストに対する...
- 言語ドメインにおける画期的かつオープン...
- 「目標を見据えて データプログラムの中心...
- AWS上で請求書処理を自動化するためのサー...
- マルチリンガルASRのためのWhisperの調整...
「Pythonでリストをフィルタリングする方法?」
イントロダクション リストのフィルタリングは、特定の基準に基づいてリストから特定の要素を抽出するPythonでの基本的な操作です。不要なデータを削除したり、特定の値を抽出したり、複雑な条件を適用したりするために、リストフィルタリングの技術をマスターすることは、効率的なデータ操作には欠かせません。この記事では、Pythonでのリストのフィルタリングのさまざまな技術と実用的な方法、さらにデータ選択スキルを向上させるための高度なフィルタリング技術について探求していきます。 フルスタックデータサイエンティストになりたいですか?AI&MLキャリアを進めるためには、BlackBelt Plusプログラムに参加する時がきました! Source: Favtutor 学習目標 Pythonリストフィルタリングの基本的な概念と重要性を理解する。 filter()、リスト内包表記、lambda関数、および条件文などの主要な技術をマスターし、効率的なデータ操作を行う。 チェインフィルター、条件の否定、ネストされたリストフィルタリング、正規表現、カスタム関数などの高度なフィルタリング方法を探求し、Pythonのデータフィルタリングの専門知識を高める。 無料でPythonを学びたいですか?今すぐ学ぶ! Pythonにおけるリストフィルタリングとは? リストフィルタリングとは、特定の条件や基準に基づいてリストから特定の要素を選択することを指します。これにより、必要なデータを抽出し、残りのデータを破棄することができ、元のリストの一部として作業できるようになります。Pythonにはリストをフィルタリングするためのさまざまな方法と技術が用意されており、それぞれに利点と使用例があります。 Pythonにおけるフィルタリングの技術 `filter()`関数の使用 Pythonの`filter()`関数は、関数とイテラブルを引数として受け取り、関数が`True`を返す要素を含むイテレータを返す組み込み関数です。与えられた条件に基づいてリストをフィルタリングするための簡潔な方法を提供します。以下に例を示します: #Pythonコード:def is_even(x): return x % 2 == 0numbers =…
メタAI研究者が生産準備完了の強化学習AIエージェントライブラリ「Pearl」をオープンソース化
強化学習(RL)は、エージェントが適切なアクションを取り、報酬を最大化するために学習する機械学習のサブフィールドです。強化学習では、モデルは経験から学習し、最適なアクションを特定します。近年、RLは大幅に進化し、自律走行車からロボティクス、さらにはゲーミングまで、幅広い分野で応用されています。また、RLシステムの容易な開発を支援するライブラリの開発も大きく進歩しています。そのようなライブラリの例にはRLLib、Stable-Baselines 3などがあります。 成功したRLエージェントを作成するには、遅延報酬やその他の影響などの問題に対処する必要があります。また、利用と探索のバランスを見つけたり、安全性やリスク要件などの追加パラメータを考慮することで、破滅的な状況を回避する必要があります。現在のRLライブラリは非常に強力ですが、これらの問題を十分に解決していません。そのため、Metaの研究者が「Pearl」というライブラリをリリースしました。このライブラリは上記の問題を考慮し、ユーザーが実世界のアプリケーションに対して多目的なRLエージェントを開発できるようにします。 PearlはPyTorchに基づいて構築されており、GPUと分散トレーニングとの互換性があります。また、テストと評価のためのさまざまな機能も提供しています。Pearlの主なポリシーラーニングアルゴリズムはPearlAgentと呼ばれ、知識の探索、リスク感度、安全制約などの特徴があり、オフラインとオンラインの学習、安全学習、履歴の要約、再生バッファなどのコンポーネントがあります。 効果的なRLエージェントは、オフライン学習アルゴリズムを使用してポリシーを学習し、評価できるようにする必要があります。さらに、オフラインとオンラインのトレーニングには、データ収集とポリシー学習のためのセキュリティ対策が必要です。それに加えて、エージェントはさまざまなモデルを使用して状態表現を学習し、履歴を状態表現に要約して望ましくないアクションをフィルタリングする能力も持っている必要があります。最後に、エージェントは再生バッファを使用してデータを効率的に再利用し、学習効率を向上させる必要もあります。Metaの研究者は、これらのすべての機能をPearl(特にPearlAgent)の設計に取り入れ、RLエージェントの設計において多目的かつ効果的なライブラリとしての潜在能力を備えています。 研究者は、モジュール性、知識の探索、安全性などの要素を評価しながらPearlを既存のRLライブラリと比較しました。Pearlは、これらの機能をすべて実装し、必要な機能を組み込んでいない競合他社とは区別されました。たとえば、RLLibはオフラインRL、履歴の要約、再生バッファをサポートしていますが、モジュール性と知識の探索をサポートしていません。同様に、SB3はモジュール性、安全な意思決定、およびコンテキストバンディットを組み込んでいません。これが研究者によって注目される他のライブラリとの違いです。 Pearlはまた、リコメンダーシステム、オークション入札システム、クリエイティブセレクションなど、さまざまな実世界のアプリケーションをサポートする予定です。これにより、異なるドメインでの複雑な問題を解決するための有望なツールとなります。RLは近年、大幅な進歩を遂げていますが、実世界の問題を解決するための実装は依然として困難です。しかし、Pearlは知識の探索や安全性、履歴の要約などの独自の特徴を持つことで、RLの広範な統合において貴重なツールとしての潜在能力を持っています。
オープンAIがインドに進出:現地チームの設立
名声高い人工知能(AI)企業OpenAIは、インドで力強い存在を確立するために重要な進展を遂げています。TechCrunchによれば、元Twitter Indiaの責任者であるリシ・ジャイトリーがOpenAIのシニアアドバイザーとなり、インドの政策や規制の入り組んだ環境を航海する重要な役割を果たしています。この動きは、OpenAIのインド政府との関係構築および現地チームの設立を目指す幅広い戦略の一部です。 OpenAIのインド進出を支援する 情報筋によれば、リシ・ジャイトリーは、インドでのGoogleの公私連携を含む豊富な経験を持ち、後にTimes BridgeのCEOとして、インドでの重要なコネクション構築に積極的にアドバイスをしています。「ジェイトリーがOpenAIで正式に雇用されているのかは明確ではありませんが、CEOのサム・アルトマンが6月にニューデリーを訪れた後に関与した」とのことです。 OpenAIのインドにおける現状 OpenAIは、先月に商標の承認を得たばかりですが、インドに正式な存在がありません。サム・アルトマンが世界ツアー中にインドのナレンドラ・モディ首相との会談を行ったことは、潜在的な発表をほのめかしていましたが、それまでには実現していません。インドはその広大な人口と世界第二のインターネット市場という特徴から注目されています。 OpenAIとインドのAIの風景 サム・アルトマンと理事会の議長であるグレッグ・ブロックマンが一時的に退任し、改革された理事会で復帰したOpenAIの最近の指導者交代は話題を呼んでいます。同社のインドにおける関心は、資金制約による同国のAI開発の遅れの議論と重なっています。批評家は、インドのAIスタートアップが40億ドルを調達したにもかかわらず、グローバルな同業他社と比較してまだ初期段階にあると主張しています。 規制の未開領域と戦略 規制上の課題が最後の障壁の一つであることから、OpenAIはインドの進化する規制環境を理解し、それに合わせて戦略を立てています。OpenAIの投資家は、同社がインドを重要な市場と見なしていることを示していますが、現在のリーダーシップが規制を航海することへの姿勢は、緻密なアプローチを示唆しています。インド政府の国際的なAI規制に対する傾向は、複雑さを増しています。 私たちの意見 リシ・ジャイトリーの専門知識によって支えられたOpenAIのインド進出は、同社のグローバル拡大における重要な一歩です。インドの急成長するAI市場は、課題と機会を併せ持っています。同社が規制の複雑さを航海する一方、インドにおけるAIの発展の方向性を理解することへの取り組みは、綿密かつ戦略的なアプローチを強調しています。OpenAIの主要な投資家で戦略的パートナーであるマイクロソフトがインドに強力な立場を持っている一方で、OpenAIのユニークなAIへの焦点は、個別の戦略を必要としています。同社がインドでの機会を探り、関係を築いていく中で、観察者はこの戦略的な動きがインドにおけるAIの発展の未来をどのように形作るかを見守っています。
ジョンズ・ホプキンス大学とUCサンタクルーズ校の研究者が、画像ベースのAI学習の画期的な進歩であるD-iGPTを発表しました
“` 自然言語処理(NLP)は、GPTシリーズなどの大規模言語モデル(LLMs)の導入により、さまざまな言語的なタスクに対して新たなパフォーマンス基準を確立する変革期に入りました。自己回帰前処理は、モデルにシーケンス内で最も可能性の高いトークンを予測することを教えることで、この驚異的な達成に影響を与える主要な要素の1つです。この基本的な技術により、モデルは構文と意味の複雑な相互作用を吸収し、人間のように言語を理解する卓越した能力を持つことができます。自己回帰前処理は、NLPに加えてコンピュータビジョンにも大きく貢献しています。 コンピュータビジョンにおいて、自己回帰前処理は最初は成功しましたが、後続の開発によりBERTスタイルの前処理に有利な鮮明なパラダイム変化が示されました。この移行は特に注目に値しますが、最初のiGPTの結果からは、自己回帰およびBERTスタイルの前処理がさまざまなタスクで同様のパフォーマンスを発揮することが示されました。ただし、視覚表現学習における効果の高さから、その後の研究ではBERTスタイルの前処理が優先されるようになりました。例えば、MAEはランダムにマスクされたピクセルの値を予測するだけの視覚表現学習に対してスケーラブルなアプローチを示しています。 本研究では、ジョンズ・ホプキンス大学とUCサンタクルーズの研究チームがiGPTを再検討し、自己回帰前処理が広範に適用された場合に高度な視覚学習者を生み出すことができるかどうかを問いました。その過程には2つの重要な変更が組み込まれています。まず、研究チームは画像が自然にノイズや冗長性を持つため、BEiTを使用して写真を意味的なトークンにトークン化します。この変更により、自己回帰予測の焦点がピクセルから意味的なトークンにシフトし、さまざまな画像領域の相互作用のより洗練された理解が可能になります。さらに、研究チームは生成デコーダに識別デコーダを追加し、次の意味的なトークンを自己回帰的に予測します。 視覚領域内の意味的なトークンの予測は、この追加のコンポーネントの責任です。さらに興味深いことに、CLIPのように識別的にトレーニングされたモデルは、この前処理経路に最適な意味的な視覚トークンを提供します。研究チームはこの改良された方法をD-iGPTと呼んでいます。彼らの提案されたD-iGPTの効率性は、さまざまなデータセットとタスクで行われた包括的なテストによって確認されています。関連する唯一のデータセットとしてImageNet-1Kを使用し、彼らのベースサイズのモデルは、従来の最先端モデルを0.6%上回る86.2%のトップ-1分類精度を達成しました。 さらに、彼らの大規模モデルは、3600万の公開データセットで89.5%のトップ-1分類精度を達成します。D-iGPTは、パブリックデータセットで以前の最先端トレーニングと同等のパフォーマンスを発揮しますが、トレーニングデータとモデルのサイズがはるかに少なくなります。同じ前処理とファインチューニングのデータセットを使用して、研究チームはD-iGPTをセマンティックセグメンテーションにも適用し、MAEと比較して優れたパフォーマンスを発揮することを明らかにしました。 “`
スタンフォード大学とFAIR Metaの研究者が、CHOIS(言語によってガイドされたリアルな3D人間対物体の相互作用を合成するための画期的なAI方法)を発表しました
CHOIS(Choice of Human-Object Interactive Scenario)によって、スタンフォード大学とFAIRメタに所属する研究者は、3Dシーン内のオブジェクトと人間の同期した動きの生成の問題に取り組みました。このシステムは、疎なオブジェクトウェイポイント、物事と人間の最初の状態、テキストの説明に基づいて操作されます。指定された3D環境内で、両方のエンティティの現実的で制御可能な動きを生成することで、人間とオブジェクトの相互作用を制御します。 AMASSなどの大規模で高品質なモーションキャプチャデータセットを活用することで、アクション条件付きの合成やテキスト条件付きの合成を含む、生成的な人間の動きのモデリングへの関心が高まっています。以前の研究では、テキストから多様な人間の動きを生成するためにVAE形式が使用されていましたが、CHOISは人間とオブジェクトの相互作用に重点を置いています。手の動きの合成に焦点を当てる既存の手法とは異なり、CHOISはオブジェクトの掴む前の全身の動きを考慮し、人間の動きに基づいてオブジェクトの動きを予測することで、多様な3Dシーンにおける相互作用の包括的な解決策を提供します。 CHOISは、コンピュータグラフィックス、エンボディドAI、ロボット工学にとって重要な3D環境での現実的な人間の行動の合成のための重要なニーズに対応しています。CHOISは、言語の説明、初期状態、疎なオブジェクトウェイポイントに基づいて同期した人間とオブジェクトの動きを生成し、現実的な動きの生成、環境の混雑への対応、言語の説明からの相互作用の合成といった課題に取り組んでおり、多様な3Dシーンにおける制御可能な人間-オブジェクトの相互作用の包括的なシステムを提供しています。 このモデルは、言語の説明、オブジェクトのジオメトリ、初期状態に基づいて同期したオブジェクトと人間の動きを生成するために、条件付きの拡散手法を使用しています。サンプリングプロセス中に制約を組み込むことで、現実的な人間とオブジェクトの接触を保証しています。トレーニングフェーズでは、接触制約を明示的に強制することなく、オブジェクトの変換を予測するための損失関数を使用してモデルを誘導します。 CHOISシステムは、ベースラインと抜粋に対して厳密な評価が行われており、条件の一致、接触の正確性、手とオブジェクトの貫通の削減、足の浮遊などのメトリクスで優れたパフォーマンスを示しています。FullBodyManipulationデータセットでは、オブジェクトのジオメトリ損失がモデルの能力を向上させています。3D-FUTUREデータセットでは、CHOISはベースラインを上回る性能を示し、新しいオブジェクトへの汎化能力を示しています。人間の主観的研究では、入力テキストとのより良い整合性と、ベースラインと比較して優れた相互作用品質を強調しています。位置と姿勢の誤差などの定量的なメトリクスは、生成された結果の地面の真実の動きからの乖離を測定します。 結論として、CHOISは言語の説明と疎なオブジェクトウェイポイントに基づいて現実的な人間-オブジェクトの相互作用を生成するシステムです。手順では、トレーニング中にオブジェクトのジオメトリ損失を考慮し、サンプリング中に効果的なガイダンス用語を使用して結果のリアリティを向上させています。CHOISで学習された相互作用モジュールは、言語と3Dシーンからのオブジェクトウェイポイントに基づいて長期的な相互作用を生成するパイプラインに統合することができます。CHOISは、提供された言語の説明と一致する現実的な人間-オブジェクトの相互作用の生成において、大幅な改善を遂げています。 今後の研究では、入力ウェイポイントとのオブジェクト動きの一致度を向上させるために、オブジェクトのジオメトリ損失などの追加の監視を統合することができます。接触制約を強制するための高度なガイダンス用語の検討は、より現実的な結果につながる可能性があります。多様なデータセットとシナリオへの評価の拡張により、CHOISの一般化能力をテストすることができます。さらなる人間の主観的な研究は、生成された相互作用についてより深い洞察を提供するでしょう。3Dシーンからのオブジェクトウェイポイントを基に、学習された相互作用モジュールを適用して長期的な相互作用を生成することも、CHOISの適用範囲を拡大することになります。
CMUとプリンストンの研究者がマンバを発表:多様なモードのディープラーニングアプリケーションにおいてトランスフォーマーの効率を超えるSSMアーキテクチャの画期的な進展
現代の機械学習において、ファウンデーションモデルは、大量のデータで事前に学習され、その後に下流のタスクに対して改変されることが成功のパラダイムとなっています。シーケンスモデルは、言語、画像、音声、オーディオ、時系列、ゲノムなど、様々なドメインからの任意のシーケンス入力に対応するもので、これらのファウンデーションモデルの基礎となっています。このアイデアは特定のモデル設計には依存していませんが、トランスフォーマーとその中心となるアテンション層は、ほとんどの現代のファウンデーションモデルの基盤となっています。セルフアテンションは、情報をコンテキストウィンドウ内で緊密にルーティングすることで、複雑な事実を表現することができるため、効果的です。 しかし、この性質には2つの基本的な欠点があります。1つはウィンドウの長さに関する二次的なスケーリング、もう1つは制限されたウィンドウの外部の情報を記述することができないことです。これらの欠点を解決するために、より効果的なアテンションに関連する戦略についての研究が大量に行われていますが、それらはアテンションの成功をもたらす要素と同じ品質を犠牲にすることがしばしばあります。これらのバリエーションが異なるドメイン全体でスケールで実験的に成功したという証拠はまだありません。構造化された状態空間シーケンスモデルは、新しく興味深いシーケンスモデリングアーキテクチャの一族です。これらのモデルは、従来の状態空間モデルから影響を受けており、畳み込みおよび再帰型ニューラルネットワークのハイブリッドと見なすことができます。 これらのモデルは、シーケンスの長さに対して線形またはほぼ線形なスケーリングを持ち、再帰または畳み込みによって非常に高速に計算することができます。また、ロングレンジアリーナなどのベンチマークを支配しており、特定のデータモダリティにおける長距離の相互依存関係のモデリングのためのツールとなっています。多くのSSM(構造化状態空間モデル)のバリエーションが、連続的な信号データを必要とする音声やビジョンなどの領域で効果を示していますが、テキストのような離散で情報密度の高い素材のモデリングにはまだ成功していません。 カーネギーメロン大学とプリンストン大学の研究チームは、従来の研究をさまざまな側面で拡張し、シーケンスの長さとの線形関係を保ちながらトランスフォーマーのようなモデリング能力を向上させる選択された状態空間モデルの新しいカテゴリを提案しています。 選択メカニズム。まず、以前のモデルの重要な欠点を指摘します。それは、入力に応じてデータを効果的に選択することができないことです。研究チームは、重要な合成タスク(セレクティブコピーと誘導ヘッドなど)から得られた理解に基づいてSSMパラメータを入力によってパラメータ化することにより、簡単な選択プロセスを提供しています。これにより、モデルは不要なデータを排除しながら関連する情報を永続的に保持することができます。 ハードウェア対応コード。この簡単な修正は、モデルの計算を技術的に挑戦します。以前のSSMモデルは、計算が効率的に行われるために入力や時間の不変である必要がありました。異なるレイヤー間でのGPUメモリ階層のIOアクセスを防ぐために、ハードウェア対応アプローチを使用してモデルをスキャンに基づいて再帰的に計算します。ただし、拡張された状態は具現化されません。結果として得られる実装は、現在のハードウェア上の以前の技術よりも高速であり、理論的な設計の構築です。 アーキテクチャ:特定の状態空間を組み込んだ簡単で均一なアーキテクチャ設計を提供するために、以前のSSMアーキテクチャの設計とトランスフォーマーのMLPブロックを1つのブロックに組み合わせ、以前の深いシーケンスモデルの設計を簡素化します。 選択的SSMとMambaアーキテクチャの主要な特徴により、これらは完全な再帰モデルとして動作するより広範な基盤モデルの基盤となることができます: (i)高品質:遺伝学や言語などの密なモダリティにおいてセレクティビティは優れたパフォーマンスを発揮します。 (ii)高速な推論とトレーニング:推論中、モデルを自己回帰的に展開するためのステップごとの時間は定数であり、過去のコンポーネントのキャッシュを必要としないため、計算とメモリのスケーリングはシーケンスの長さに比例します。 (iii)長いコンテキスト:品質と効率の組み合わせにより、シーケンスの長さが100万に達するまで実際のデータでのパフォーマンス向上が得られます。 研究チームは、実験的な証拠をもとに、Mambaの潜在能力を汎用性のあるシーケンスFMのバックボーンとして、さまざまなモダリティや状況における事前学習品質やドメイン特化のタスクパフォーマンスに関してサポートしています: ・人工材料。Mambaは、巨大な言語モデルにとって重要とされるコピーや誘導ヘッドタスクなどの重要な合成タスクを容易に解決するだけでなく、無限に長い解を予測することもできます。 ・ゲノミクスとオーディオ。音声波形やDNA配列のモデリングにおいて、事前学習品質や下流のメトリクスに関して、MambaはSaShiMi、Hyena、Transformersなどの従来の最先端モデルを凌ぎます。そのパフォーマンスは、両方のコンテキストで100万文字長のシーケンスまでより多くの文脈を持つことで改善されます。 • モデリング言語。マンバは、下流で実施される評価と事前学習の複雑さの両方で本当にTransformerのようなパフォーマンスを実現する最初の線形時間シーケンスモデルを表しています。 研究チームは、Mambaが、LLaMaに基づく高度なTransformerトレーニングレシピを含む多くのベースラインを上回り、1Bのパラメータまでのスケーリング則に従っています。同じサイズのTransformerと比較して、彼らのMamba言語モデルは5倍の世代スループットを持ち、Mamba-3Bの品質はその2倍のサイズのTransformerと同等です。
Google DeepMindはAlphaCode 2を導入しました:競争プログラミングの優れた進歩において、ジェミニモデルの力を利用した人工知能(AI)システム
機械学習の分野では、テキストデータの生成と理解において驚くべき進展が見られています。しかし、問題解決における新しい革新は比較的単純な算術とプログラミング問題に制約されています。競技プログラミングは、限られた時間内に複雑な問題のためのコードソリューションを書く競技者のコーディングスキルを評価する厳しいものであり、批判的思考、論理的思考、アルゴリズムとコーディングの概念の徹底的な理解が必要です。 Google DeepMindは、競技プログラミングの分野を解決し、向上させることを目指して、AlphaCode 2を導入しました。AlphaCodeよりも高速で正確さと迅速さが求められるゲームであり、AlphaCode 2は基準を引き上げ、ゲームのルールを変えました。この人工知能(AI)システムは、GoogleのGeminiチームによって2023年に作成された強力なGeminiモデルに基づいており、その洗練された論理思考と問題解決能力の基盤となっています。 チームは、AlphaCode 2のアーキテクチャは強力な大規模言語モデル(LLM)と競技プログラミングに特化した高度な検索および再順位付けシステムに基づいていると共有しています。それはコードサンプルを生成するポリシーモデルのファミリー、多様性を促進するサンプリングメカニズム、非準拠のサンプルを除去するフィルタリングメカニズム、冗長性を除去するクラスタリングアルゴリズム、および最適な候補を選ぶスコアリングモデルで構成されています。 プロセスの最初のステップは、AlphaCode 2の基盤となったGemini Proモデルです。それはGOLDトレーニングターゲットを使って厳密な調整を2回行います。1回目はCodeContestsデータセットの新バージョンに焦点を当て、多くの問題と人間が生成したコード例が含まれています。その結果、競技プログラミングで遭遇する多くの困難に対応するために特別に設計された洗練されたモデルのファミリーが生成されます。 AlphaCode 2は包括的かつ綿密なサンプリング戦略を採用しています。システムはチャレンジごとに最大100万のコードサンプルを生成し、各サンプルにランダムに温度パラメータを割り当てることで多様性を促進します。高品質のC++のサンプルがGeminiの助けを借りてAlphaCode 2に使用されています。 評価によると、AlphaCode 2は競技プログラミングのよく知られたプラットフォームであるCodeforcesで最近のテストでその能力を示しました。AlphaCode 2はたった10回の試行で驚異的な43%の問題に回答することができました。同様の状況下で25%の問題を扱った先行システムAlphaCodeに比べて、これは重要な進展です。AlphaCode 2は平均して85番目のパーセンタイルに位置し、中央値の競合相手を上回り、かつてはAIシステムの能力とは考えられていなかったレベルで動作しています。 まとめると、AlphaCode 2は競技プログラミングにおいて困難な問題に取り組むためにAIシステムを使用する方法を示す、驚くべき開発です。このシステムの成功は技術的な成果であり、人間とAIプログラマがプログラミングの限界を押し上げるために協力する可能性を示しています。
「素晴らしいAIアプリケーションのクイックでエレガントなデモを作成する」
このブログシリーズの前のパートでは、YouTubeのビデオURLを入力として受け取り、そのビデオを書き起こし、内容を簡潔かつ一貫性のある形式にまとめるMLアプリケーションの構築方法を示しました
「2024年に成功したデータサイエンティストがテックジョブを獲得する方法-求職活動への3ステップ勝利戦略」
最近、データサイエンティストの間で調査を行い、驚愕の数値を見つけました−86%の人が無作為に仕事の申し込みを送って、ベストを期待していることがわかりました期待するだけでは戦略ではありませんし、このような時代に…
「SuperDuperDBを活用して簡単にシンプルな重複排除システムを作成する」
私はアイデンティティ解決の分野でかなりの年数を費やしてきました重複する顧客アカウントを特定し、それらをグループに関連付けることを試みてきました多くの大規模なB2C企業に共通する問題の一つです…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.