Learn more about Search Results クラウド - Page 17

「データ統合とAIによる洞察力」

業界全般において意思決定と自動化の向上のためのデータ統合とAIの変革的な相乗効果を探求する

「アリババは、量子コンピューティングよりもこれを優先します」

中国のテック巨人であるアリババは最近、量子コンピューティング部門を廃止するという戦略的な重点の大幅な転換を発表しました。この決定は、計画されていたクラウド事業の中止に続くもので、新興技術に再配分することを目指しています。具体的には、生成型人工知能(AI)に特化しています。 量子コンピューティング部門の閉鎖 アリババの量子コンピューティング部門の閉鎖は、研究開発戦略の大きな転換を示しています。約30人の従業員が影響を受ける見込みですが、アリババはこれらの個人をサポートすることに全力を注ぎ、浙江大学での潜在的な機会を示唆しています。この動きは、戦略的な転換の中でも才能の育成にアリババが注力していることを強調しています。 要因 量子コンピューティング部門の閉鎖の具体的な理由は明らかにされていませんが、専門家は中国との半導体取引を禁止する米国の禁輸措置との関連性を推測しています。この禁輸措置により、中国の量子コンピューティング計画は混乱し、他の地域がセクターへの投資を強化しています。アリババは2015年以来、量子コンピューティング研究に1,500万ドル近くを投資しています。 アリババの内部改革 量子コンピューティング部門の閉鎖は、アリババが2022年に行っている幅広い組織改革の一環です。同社は以前、事業を6つの独立したオペレーティングユニットに分割することを発表し、大幅な人員削減につながりました。クラウド事業の中止などにより株価が下落し、リーダーシップの再編が行われました。市場の反応は、戦略的な転換における明確なコミュニケーションと透明性の重要性を強調しました。 生成型人工知能の台頭 内部の課題と組織再編にも関わらず、生成型人工知能はアリババの重点的な焦点となっています。同社の取り組みは、中国当局の法的枠組みに合わせた企業とAI研究者向けのカスタマイズが可能なオープンソースのAIモデルの導入により裏付けられています。生成型人工知能への転換は、アリババが市場のダイナミクスの進化に適応し、テクノロジーの分野でリーダーシップを維持する決意を示しています。 また読む: アリババ、メタに立ち向かうためにAIモデルをオープンソース化して開発者をサポートする計画 私たちの意見 アリババの戦略的な動きは、テック業界のダイナミックな性質を浮き彫りにします。量子コンピューティング部門の閉鎖と生成型人工知能への重点は、新興技術への取り組みを示しています。量子コンピューティングのグローバルな競争の増加により、アリババのリソースの再配分は同社が先駆的な立場を維持することを確認しています。課題の上手な対処は、AIとテクノロジーイノベーションの未来を形作る重要なプレーヤーとしてのアリババを位置付けています。生成型人工知能への重点を置く決定は、同社の先見の明を示しており、イノベーションと適応性を強調しています。

「ChatGPT Essentials:必要なデータサイエンスのチートシート」

イントロダクション 広大なデータセットから意味のある情報を抽出するために、アルゴリズム、統計学、および専門知識が交わるデータサイエンスの世界へようこそ。この技術の進歩の時代において、的確なツールを手にすることは、複雑なデータ分析の風景を航行する上で大きな違いを生むかもしれません。そこで、「CHATGPT for Data Science Cheat sheet」という包括的なガイドが登場します。このガイドは、データサイエンスコミュニティ向けに特別に調整された、従来とは異なるChatGPTの洞察を提供します。経験豊富なプロフェッショナルからデータサイエンスの旅を開始する方まで、このチートシートは、ワークフローの効率化、分析の向上、データの処理における熟練度向上のために設計されています。 ChatGPTはGPT(Generative Pre-trained Transformer)という最先端の言語モデルを基に構築されています。GPTは自然言語処理に優れており、人間に近いテキストの理解と生成が可能です。CHATGPTはこれに加えて対話的な会話能力を組み込んでおり、データサイエンティストにとって理想的なツールとなっています。 フルスタックのデータサイエンティストになりたいですか? AI&MLのキャリアを加速するために、BlackBelt Plusプログラムを活用しましょう! CHATGPTの特徴と機能 自然言語処理:CHATGPTは高度な自然言語処理技術を活用してテキストを理解し生成するため、複雑なデータサイエンスクエリにも適応できます。 コンテキストの理解:Transformerアーキテクチャを持つCHATGPTは会話の文脈を捉えることができ、関連性のある正確な応答を提供します。 言語生成:CHATGPTは文脈に即した適切なテキストを生成することができ、データの探索、分析、レポート作成などのタスクに役立ちます。 対話的な会話能力:CHATGPTは対話的な会話ができるため、データサイエンティストは問題解決や探索のためのダイナミックで反復的なやり取りを行うことができます。 データサイエンスでのCHATGPTの応用例 データの探索と分析 探索的データ分析:CHATGPTはデータセットの探索と理解を支援し、さらなる分析のための洞察や提案を提供します。 データの可視化:CHATGPTは視覚化のテキスト説明を生成することで、データのストーリーテリングを向上させ、データの理解を促進します。 統計分析:CHATGPTは統計的なクエリに答えたり、計算や統計的な概念の説明を行ったりすることができ、データ分析に役立ちます。 機械学習…

良いエンジニア、悪いエンジニア、悪意のあるエンジニア──データリーダーのための逸話

私たちは皆、優れたエンジニアが大好きです彼らは素晴らしい橋や道路、ロケット、アプリケーション、データ構造を構築しますこれらは私たちの日常をより簡単で楽しいものにします同じロジックによれば、不出来なエンジニアは...

「3Dシーン表現の境界を破る:新しいAIテクニックによる高速かつ効率的なレンダリングとストレージ要件の削減によるゲームの変革」

NeRFは、連続的な3Dボリュームとしてシーンを表します。離散的な3Dメッシュやポイントクラウドの代わりに、シーン内の任意の3Dポイントの色と密度の値を計算する関数を定義します。異なる視点からキャプチャされた複数のシーン画像でニューラルネットワークをトレーニングすることにより、NeRFは観測された画像と整合性のある正確な表現を生成する方法を学習します。 NeRFモデルがトレーニングされると、任意のカメラの視点からシーンの写真のような新しいビューを合成し、高品質のレンダリング画像を作成できます。NeRFは、従来の3D再構築方法では難しい複雑な照明効果、反射、透明性を含む高忠実度のシーンの詳細を捉えることを目指しています。 NeRFは、高品質な3D再構築とシーンの新しいビューのレンダリングにおいて有望な結果を示し、コンピュータグラフィックス、仮想現実、拡張現実などの分野で精度の高い3Dシーン表現が重要なアプリケーションに役立つものとなっています。ただし、大規模かつ詳細なシーンをキャプチャするために、NeRFは記憶容量や処理能力の要件による計算上の課題も抱えています。 3Dガウス描画では、高品質のレンダリング画像を維持するために多数の3Dガウスが必要とされ、これには多大なメモリとストレージが必要とされます。ガウス点の数を削減しながら性能を犠牲にせずにガウス属性を圧縮することは効率を高めます。成均館大学の研究者は、高いパフォーマンスを保持しながらガウスの数を大幅に削減する学習可能なマスク戦略を提案しています。 また、彼らは球面調和関数に頼らず、グリッドベースのニューラルフィールドを使用することで、ビュー依存の色のコンパクトで効果的な表現を提案しています。彼らの研究は、高いパフォーマンス、高速トレーニング、コンパクトさ、リアルタイムの描画を実現する3Dシーン表現の包括的なフレームワークを提供します。 彼らは実際のシーンや合成シーンを含むさまざまなデータセットでコンパクトな3Dガウス表現を幅広くテストしています。データセットに関係なく、実験全体で、3Dガウス描画と比較してストレージが10倍以上削減され、シーン表現の品質を維持しながら描画速度が向上することが一貫して確認されました。 ポイントベースの手法は3Dシーンの描画に広く使用されています。最も単純な形式はポイントクラウドです。しかし、ポイントクラウドは穴やエイリアシングなどの視覚的なアーティファクトを引き起こす可能性があります。研究者たちは、ポイントをラスタ化ベースのポイントスプラッティングと微分可能なラスタ化を介して処理することによってこれを軽減する点ベースのニューラルレンダリング手法を提案しました。 NeRFの未来は、3Dシーンの理解とレンダリングを革新する可能性を秘めており、現在の研究の取り組みがさらなる範囲を拡大し、効率的でリアルなさまざまなドメインでの応用を可能にすることが期待されています。

「2024年に必ず試してみるべきトップ15のベクターデータベース」

イントロダクション 迅速に進化するデータサイエンスの風景において、ベクトルデータベースは高次元データの効率的な保存、検索、操作を可能にする重要な役割を果たしています。本稿では、ベクトルデータベースの定義と意義を探求し、従来のデータベースとの比較を行い、2024年に検討すべきトップ15のベクトルデータベースについて詳細な概要を提供します。 ベクトルデータベースとは何ですか? ベクトルデータベースは、本質的にはベクトル化されたデータを効率的に処理するために設計されています。伝統的なデータベースが構造化データの保存に優れているのに対し、ベクトルデータベースは多次元空間におけるデータポイントの管理に特化しており、人工知能、機械学習、および自然言語処理のアプリケーションに理想的です。 ベクトルデータベースの目的は、ベクトル埋め込み、類似検索、高次元データの効率的な処理を支援する能力にあります。伝統的なデータベースは非構造化データに苦労する場合があるのに対し、ベクトルデータベースはデータポイント間の関係性や類似性が重要なシナリオで優れたパフォーマンスを発揮します。 ベクトルデータベース vs 伝統的なデータベース 側面 伝統的なデータベース ベクトルデータベース データの種類 テーブル形式の単純なデータ(単語、数字)。 専用の検索を行う複雑なデータ(ベクトル)。 検索方法 正確なデータの一致。 近似最近傍探索(Approximate Nearest Neighbor、ANN)を使用した最も近い一致。 検索手法 標準的なクエリメソッド。 ハッシュやグラフベースの検索など、ANNに特化した手法。 非構造化データの処理 予め定義された形式の不足により困難。…

2024年のデータサイエンス向けトップ15のベクトルデータベース:包括的ガイド

導入 データサイエンスの急速に変化する風景において、ベクトルデータベースは高次元データの効率的なストレージ、検索、操作を可能にする重要な役割を果たしています。この記事では、ベクトルデータベースの定義と重要性を探り、従来のデータベースとの比較を行い、2024年に考慮すべきトップ15のベクトルデータベースの詳細な概要を提供します。 ベクトルデータベースとは何ですか? ベクトルデータベースは、本質的にはベクトル化されたデータを効率的に処理するよう設計されています。従来のデータベースが構造化データのストレージに優れているのに対し、ベクトルデータベースは多次元空間でデータポイントを管理することに特化しており、人工知能、機械学習、自然言語処理などのアプリケーションに理想的です。 ベクトルデータベースの目的は、ベクトル埋め込み、類似性検索、高次元データの効率的な処理を容易にする能力にあります。従来のデータベースが非構造化データに苦労するかもしれない状況において、ベクトルデータベースはデータポイント間の関係や類似性が重要なシナリオで優れた性能を発揮します。 プロジェクトに適したベクトルデータベースの選び方 プロジェクトに適したベクトルデータベースを選ぶ際には、以下の要素を考慮してください: データベースをホストするためのエンジニアリングチームはありますか?それとも完全に管理されたデータベースが必要ですか? ベクトル埋め込みを持っていますか?それともベクトルデータベースによる生成が必要ですか? バッチ処理やオンライン処理などのレイテンシー要件 チーム内の開発者の経験 与えられたツールの学習曲線 ソリューションの信頼性 実装とメンテナンスのコスト セキュリティとコンプライアンス 2024年のデータサイエンスにおけるトップ15のベクトルデータベース 1. Pinecone ウェブサイト:Pinecone オープンソース:いいえ GitHubスター数:836 問題解決: Pineconeはクラウドネイティブなベクトルデータベースで、シームレスなAPIと煩雑なインフラストラクチャを提供しています。ユーザーはインフラストラクチャを管理する必要がなく、AIソリューションの開発と拡大に集中することができます。Pineconeはデータの素早い処理に優れており、メタデータフィルターとスパース-デンスインデックスをサポートして正確な結果を提供します。 主な特徴:…

「GPUの加速なしで大規模なシーンをリアルタイムでマッピングできるのか?このAI論文は、高度なLiDARベースの位置特定とメッシュ作成のために「ImMesh」を紹介します」

実際の世界にマッチする仮想環境を提供することで、メタバース、VR / AR、ビデオゲーム、物理シミュレータを含む3Dアプリケーションの広範な普及が人間の生活スタイルを向上させ、生産効率を向上させています。これらのプログラムは、実際の環境の複雑なジオメトリーを代表する三角形メッシュに基づいています。現在のほとんどの3Dアプリケーションは、オブジェクトモデリングの基本ツールとして、頂点と三角形の面を集めた三角形メッシュに依存しています。 レンダリングとレイトレーシングの最適化と高速化の能力に無鉄砲であり、センサーシミュレーション、高密度マッピングと測量、剛体力学、衝突検出などでも有用です。しかし、現在のメッシュは、大規模なシーンメッシュの大量生産の能力を妨げるCADソフトウェアを使用して作成された優れた3Dモデラーの出力であることがほとんどです。 そのため、3D再構成コミュニティでは、特に大規模なシーンに対して実時間のシーン再構成が可能な効率的なメッシュアプローチの開発が注目されています。 コンピュータ、ロボット工学、3Dビジョンにおける最も困難な課題の1つは、センサー測定から大規模シーンのリアルタイムメッシュ再構成です。これには、近くにある三角形の面でシーン表面を再作成し、エッジで接続する必要があります。幾何学的なフレームワークを高い精度で構築することは、この困難な課題にとって不可欠であり、実世界の表面で三角形の面を再構築することも重要です。 リアルタイムなメッシュ再構成と同時位置推定の目標を達成するために、香港大学と南方科技大学の最近の研究では、ImMeshというSLAMフレームワークが紹介されています。 ImMeshは、正確で効率的な結果を提供するために協力して作動する4つの相互依存モジュールに依存する、細心の注意を払って開発されたシステムです。 ImMeshは、メッシュ再構成と同時にローケライゼーションを達成するためにLiDARセンサーを使用しています。 ImMeshには、以前の研究で構築された新しいメッシュ再構成アルゴリズムであるVoxelMapが含まれています。具体的には、提案されたメッシングモジュールはボクセルを使用して3次元空間を分割し、新しいスキャンからポイントを含むボクセルを迅速に特定することができます。効率的なメッシングの次のステップは、次元を減少させることであり、これによりボクセルごとの3Dメッシュ化の問題が2Dの問題に変換されます。最後の段階では、ボクセル単位のメッシュのプル、コミット、プッシュプロシージャを使用して三角形面をインクリメンタルに再作成します。 チームは、これが従来のCPUを使用して大規模なシーンの三角形メッシュをオンラインで再作成するための最初の公開努力であると主張しています。 研究者は合成データと実世界のデータを使用して、ImMeshの実行時間のパフォーマンスとメッシュ化の精度を徹底的にテストし、その結果を既知のベースラインと比較してどれだけうまく機能するかを確認しました。まず、まとめてデータを収集することで、データ収集中にメッシュが迅速に再構築されていることを確認するために、メッシュのライブビデオデモを示しました。その後、異なるシナリオで4つの別々のLiDARセンサーによって取得された4つの公開データセットを使用して、ImMeshを徹底的にテストしてシステムのリアルタイム能力を検証しました。最後に、実験3でのImMeshのメッシング性能を既存のメッシングベースラインと比較してベンチマークを確立しました。結果によると、ImMeshはすべてのアプローチの中で最高の実行時間パフォーマンスを維持しながら、高いメッシング精度を達成しています。 彼らはまた、LiDARポイントクラウドの補強にImMeshを使用する方法を実証しています。この方法は、生のLiDARスキャンよりも密集して広い視野(FoV)を持つ規則的なパターンで補強ポイントを生成します。アプリケーション2では、彼らは自分たちの作品をR3LIVE ++およびImMeshと組み合わせることで、シーンのテクスチャ再構築の目標を損なうことなく達成しました。 チームは、空間解像度に関してはスケーラブル性に乏しいという大きな欠点を強調しています。固定された頂点密度のため、ImMeshは大きな平らな表面を扱う際に数多くの小さな面を非効率的に再構築する傾向があります。提案されたシステムにはまだループ補正メカニズムがないため、これが2番目の制限です。これは、再訪問領域での累積ローカリゼーションエラーによる徐々のドリフトの可能性があることを意味します。再訪問の問題が発生すると、再構築結果が一貫していないかもしれません。LiDARポイントクラウドを使用したループ識別の最近の作業をこの作業に取り込むことで、研究者はこの問題を克服するのに役立ちます。ループ検出アプローチを利用することで、リアルタイムでループを識別し、ドリフトの影響を軽減し、再構築結果の信頼性を高めるためにループ補正を実装することが可能になります。

「ダイナミックな時代のソフトウェアリーダーシップの活路」

ソフトウェア業界でリーダーシップを発揮することが一筋縄ではいかない理由を探求しましょう過去の成功に依存するリスク、無関係さの危険性、そして持続的な学習の重要性を学びましょう 適応し、幻想を打ち砕き、ソフトウェア開発のダイナミックな世界におけるコーディングと戦略を結ぶスタッフエンジニアなど、進化する役割を理解しましょう

マイクロソフトの研究者がConfidential Consortium Framework (CCF)を紹介:セキュアな状態を持つCIAアプリケーションを開発するための汎用AIフレームワーク

「CIA Trinity(CIAトリニティ)」は、よく知られた情報セキュリティフレームワークであり、データの機密性、整合性の保護、高い可用性の3つの属性で構成されています。各属性から始めて、研究チームは信頼性の高い多者参加アプリケーションを信頼できないインフラストラクチャ上で実行することに焦点を当てています。個人データのプライバシーを保護する責任は組織にあります。この責務は法律によってますます規制されるようになり、実施しない場合の影響は、たとえばGDPRの場合には売上高の4%になる可能性があります。企業は知的財産を保護したり、競争力を獲得したり、秘密を守る必要がある場合でも、データを秘密に保つことを望む場合があります。 実行中の秘密はより難しいですが、静止状態と飛行中の暗号化は試された方法です。さらに、秘密は単独では部分的にしか解決されません。むしろ、任意のデータを保護する問題をキーの保護にまで縮小し、そのキーは一連の確立されたガイドラインに従って制御、保管、発行される必要があります。これは整合性の保護です。組織は、自らの管理下のデータを違法または偶発的な変更から保護し、データの機密性を維持するという二重の責任を負います。データにアクセスするコードの整合性の維持は、データの秘密を維持するために頻繁に必要とされます。コードの整合性と透明性を組み合わせることで、データを共有するパーティーは情報の意図した使用方法に合意することができます。 たとえば、銀行は政府のために要求を処理することで反マネーロンダリング法に従うことができますが、顧客の完全な情報は提供しません。クラウドコンピューティングの広範な普及により、アプリケーションに低い参入障壁とコストの比例的な拡張性を提供するため、これらのシステムの信頼できる計算基盤(TCB)は時間の経過とともに拡大しています。信頼できないクラウドインフラストラクチャを使用する場合、リモートでデータの整合性と機密性を確保することはより困難です。そのため、健康、金融、または政府に関連するような非常に敏感なアプリケーションは、パブリッククラウドに移行することができません。 この困難な状況を考慮すると、次の研究課題にはまだ回答が必要です:クラウドプロバイダを多者参加アプリケーションのTCBから排除しつつ、開発者がクラウドの計算とストレージリソースを活用できるようにすることは可能でしょうか?多者参加シナリオの需要が増える中で、互いに完全に信頼しないパーティー間でデータシステムを統合することは特に重要です。多くのソースからのデータを統合し、それを協力して利用して価値を向上させ、新しいユースケースを作成することができます。ただし、機密性と整合性には制約があり、研究チームは複数の異なる参加者のニーズとアクセス権限を考慮する必要があります。 現代のデジタルインフラストラクチャがますます重要になっているため、アプリケーションは信頼性があり、高い可用性が求められます。デジタルインフラストラクチャは、必要な一貫性とコストトレードオフであっても、100%の利用可能性を保証することはできませんので、通常の運用中に予想される障害に対して堅牢である必要があります。研究チームは、非常に実用的でありながら倫理的に優れたアプローチを取る必要があります。これには、信頼できないクラウドインフラストラクチャや多者参加の信頼できないガバナンスなど、様々な状態保持アプリケーションや現代の展開シナリオをサポートするCIAアプリケーションの作成が含まれます。 マイクロソフト、KU Leuven、ケンブリッジ大学の研究チームは、この研究のConfidential Consortium Framework(CCF)を提案しています。CCFは、分散トラストと集中クラウドコンピューティングを統合しています。リモートで証明可能な機密性と整合性により、CCFはクラウドベースの信頼性の高い実行環境を利用しています。さらに、トランザクションキーバリューストアとステートマシンレプリケーションは、高い可用性と監査を実現するために不変の台帳と組み合わせられています。CCFの柔軟性により、開発者は高度に調整可能な監視のために独自の多者参加ガバナンスアーキテクチャを使用し、アプリケーションロジックを適用することができます。 クラウドコンピューティングや多者参加協力において、この研究チームはデータの機密性、整合性の保護、高い可用性などを探求する多くの研究チームの1つです。CCFは、多くの先行システムとは異なり、孤立した安全な実行ソリューション(代わりに二次的なストレージシステムに依存)または孤立したデータストレージソリューション(台帳、データベース、またはキーバリューストアの形式)のいずれかを提供するのではなく、実行とストレージの両方を可能にするエンドツーエンドのソリューションを提供します。CCFは、信頼できる計算基盤、柔軟性のあるプログラミングアプローチ、セキュリティと使いやすさのバランスを備えています。さらに、CCFは、スナップショット、ライブコード更新、再構成、災害復旧、インデックスなどの機能に依存するAzure Managed CCFやAzure Confidential Ledgerなどのサービスを通じて本番環境で信頼されています。これは、汎用で自己完結型の設計の重要性を強調しています。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us