Learn more about Search Results Twitter - Page 16
- You may be interested
- 「GROOTに会おう:オブジェクト中心の3D先...
- 「LLMsを使用して、ロボットの新しいタス...
- 「サンノゼは歩行者の交通事故死を防ぐた...
- Amazon SageMaker Model Cardの共有を利用...
- In this article, we will explore the fa...
- 「蒸留されたアイデンティティの傾向最適...
- 学習する勇気:L1およびL2正則化の解説(...
- 清華大学の研究者たちは、潜在意味モデル...
- 「バイオインスパイアードハードウェアシ...
- Link-credible:Steam、Epic Games Store...
- 車両ルーティング問題 正確な解法とヒュー...
- 「Pythonの継承の一般的な実践と落とし穴...
- 特徴選択にANOVAを使用しますか?
- アリババは、2つのオープンソースの大規模...
- お楽しみはいかがですか?データサイエン...
データの宇宙をマスターする:繁栄するデータサイエンスのキャリアへの鍵となる手順
この記事では、スキルの学習から仕事の入手まで、データサイエンスのキャリアの主要な6つの柱をカバーしています
「機械学習をマスターするための5つの無料の本」
機械学習は、現在コンピュータ科学の中でも最もエキサイティングな分野の一つですこの記事では、2023年に機械学習を学ぶための最高かつ無料の5冊の書籍を紹介します
「Hugging Face の推論エンドポイントを使用して埋め込みモデルを展開する」
Generative AIやChatGPTのようなLLMsの台頭により、様々なタスクの組み込みモデルへの関心と重要性が高まっています。特に検索や自分のデータとのチャットなどのリトリーバル・オーグメント生成のために、埋め込みモデルは役立ちます。埋め込みは、文、画像、単語などを数値ベクトル表現として表現するため、意味的に関連するアイテムをマッピングし、役立つ情報を取得することができます。これにより、質と特定性を向上させるための関連コンテキストをプロンプトに提供することができます。 LLMsと比較して、埋め込みモデルはサイズが小さく、推論が早いです。このため、モデルを変更したり、モデルの微調整を改善した後に埋め込みを再作成する必要があるため、非常に重要です。また、リトリーバルのオーグメントプロセス全体ができるだけ高速であることも重要です。これにより、良いユーザーエクスペリエンスを提供することができます。 このブログ記事では、オープンソースの埋め込みモデルをHugging Face Inference Endpointsに展開する方法と、モデルを展開するのを簡単にするマネージドSaaSソリューションであるText Embedding Inferenceの使用方法を紹介します。さらに、大規模なバッチリクエストの実行方法も説明します。 Hugging Face Inference Endpointsとは何か Text Embedding Inferenceとは何か 埋め込みモデルをインファレンスエンドポイントとして展開する方法 エンドポイントにリクエストを送信し、埋め込みを作成する方法 始める前に、インファレンスエンドポイントについての知識をリフレッシュしましょう。 1. Hugging Face Inference Endpointsとは何ですか?…
一行のコードでHuggingfaceのデータセットを対話的に探索する
ハギング フェイス データセットライブラリは、70,000以上の公開データセットにアクセスするだけでなく、カスタムデータセットのための非常に便利なデータ準備パイプラインも提供しています。 Renumics Spotlightを使用すると、データ内の重要なクラスターを特定するためのインタラクティブな可視化を作成することができます。SpotlightはHugging Faceデータセット内のデータセマンティクスを理解しているため、たった1行のコードで始めることができます: import datasetsfrom renumics import spotlightds = datasets.load_dataset('speech_commands', 'v0.01', split='validation')spotlight.show(ds) Spotlightを使用すると、予測や埋め込みなどのモデル結果を活用して、データセグメントやモデルの失敗モードに対するより深い理解を得ることができます: ds_results = datasets.load_dataset('renumics/speech_commands-ast-finetuned-results', 'v0.01', split='validation')ds = datasets.concatenate_datasets([ds, ds_results],…
レイザーのエッジに VFXスターであるサーフェスドスタジオが、今週『NVIDIA Studio』で驚くべきSFの世界を作り出しました
ビジュアルエフェクトアーティストのサーフィスドスタジオが、最新のVFXプロジェクトを披露するためにNVIDIA Studioに戻ってきました。このプロジェクトは、新しいRazer Blade 16 Mercury Edition ラップトップとGeForce RTX 4080 グラフィックスによって駆動されています。 サーフィスドスタジオは、映画やテレビ、コンソールゲームに視覚効果をシームレスに統合する写実的なデジタル生成イメージを作成しています。 最近のSFプロジェクトのインスピレーションは、3Dのトランジションを試して得られました。ラップトップの画面をドクターストレンジのポータルやマトリックスのトランジションのような異なる世界へのゲートウェイとして使用するアイデアです。 ルールを破り、ヒーローになろう サーフィスドスタジオは、最新のプロジェクトで没入型の体験を作り出すことを目指しました。 彼は、「観客が3Dの世界に「吸い込まれる」と驚く体験をしたかった」と説明しています。 サーフィスドスタジオは、簡単なスクリプトとアイデアのスケッチ、そして撮影したショットのテスト編集を行いました。「これによって、どの効果をどのように実現し、それらが実際に可能かどうかを考えることができます」と彼は語りました。 その後、彼はビデオを撮影し、Adobe Premiere Proに取り込んで荒いテスト編集を行いました。その後、使用する最も適したクリップを選択しました。 彼はAdobe After Effectsで映像を修正し、Warp Stabilizerツールでショットを安定化させ、Mocha Proツールで邪魔な背景要素を除去しました。両効果は、彼のGeForce…
「Pythonのf-Stringsマジック:すべてのコーダーが知るべき5つのゲームチェンジングなトリック」
「Pythonのf-stringsの知られていないけれどもとても役に立つ使い方を探求しましょうデバッグにおける使用方法、日付の書式設定、LLMのプロンプトテンプレートなど、さらに詳しく見ていきましょう」
『LLMsと生成AIをマスターするための10の重要なトピック』
「生成AIは新しい分野です過去の1年間で、データサイエンティストやAIを使って何をでも開発したい人々を支援するための新しい用語、開発、アルゴリズム、ツール、フレームワークが登場しました生成AIにより深く探求したいと考えている人々には学ぶべきことがたくさんあります」
『平易な日本語で解説する基本的な10の統計概念』
「確率分布から中心極限定理まで、データの理解を向上させるために、シンプルに説明された基礎的な統計概念10選を探求してみましょう」
QLoRA:16GBのGPUで大規模な言語モデルの訓練を行う
「我々は、モデルのための量子化などの体重減少技術と、パラメータ効率の良いファインチューニング技術であるLoRAを組み合わせる予定ですこの組み合わせの結果として生まれるのが、QLoRAです」
「SQLを使用したデータベースの導入:ハーバードの無料コース」
「ハーバード流でSQLを学びたいですか?今日からハーバードのCS50 SQLで学ぶことを始めましょうSQLを使ったデータベースの無料講座です」
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.