Learn more about Search Results Pi - Page 16

ウェアラブルフィットネストラッカー:早期疾患の検出の可能性を開く

消費者向けと医療用のウェアラブルが融合のばしょにあるかもしれませんか?ウェアラブルが融合して、より価値のあるものになるかもしれません

Googleは独占禁止法訴訟で敗訴:ビッグテックにとって何を意味するのか?

「エピックゲームズが検索大手との法的闘争に勝利した事は画期的な勝利であり、同社の強さと決断力を示す重要な節目となりました」

「偉大なる遺伝子データの漏洩:知っておくべきこと」

A class action lawsuit has been launched against a genetic testing company for the protection of personal genetic data that was unfortunately stolen.

MITエンジニアによって開発された心臓右心室のロボティックレプリカ

マサチューセッツ工科大学(MIT)の名門研究者たちは、革新的な心臓右室のロボットレプリカを開発しましたこの画期的な創造物は、人間の心臓の理解を大きく広げるだけでなく、医学研究と技術の進歩にも大きく貢献する可能性があります

「チャットボットの台頭:バカな機械からクリエイティブな共同作業者へ」

2023年は私たちにとって画期的な年となりましたロボットとのコミュニケーション、創造性、チームワーク、さらには操作術をマスターしたことで、私たちの能力が向上しました

📱 アップルが不正な認証からのiMessageアクセスをブロック

アップルは積極的な対策を実施することで顧客の安全を最優先に考えていますしかし、Beeperによると、彼らの最新の行動は逆効果になってしまったようですしかし、アップルは顧客の安全を重視し、積極的な対策を実施する姿勢は評価されるべきです

バイトダンスAI研究がStemGenを紹介:音楽の文脈を聞いて適切に反応するためにトレーニングされたエンドツーエンドの音楽生成ディープラーニングモデル

音楽生成は、既存の音楽に存在するパターンと構造を模倣するためにモデルを訓練することで行われるディープラーニングの一環です。RNN、LSTMネットワーク、トランスフォーマーモデルなど、ディープラーニングの技術が一般的に使用されます。この研究では、音楽のコンテキストに応じて反応する非自己回帰型のトランスフォーマーベースのモデルを使用して音楽音声を生成する革新的なアプローチを探求しています。従来のモデルが抽象的な調整に頼っているのに対し、この新しいパラダイムは聞くことと反応することを重視しています。この研究では、フィールドの最新の進歩を取り入れ、アーキテクチャの改良について議論しています。 SAMIと字節跳動社の研究者は、音楽コンテキストに反応する非自己回帰型のトランスフォーマーベースのモデルを紹介し、MusicGenモデルのための公開されたエンコードチェックポイントを活用しています。評価には、Frechet Audio Distance(FAD)やMusic Information Retrieval Descriptor Distance(MIRDD)などの標準的な指標や音楽情報検索ディスクリプタのアプローチが使用されています。その結果、このモデルは客観的な指標と主観的MOSテストを通じて、競争力のある音声品質と強固な音楽のコンテキストに対する整合性を示しています。 この研究は、画像と言語処理からの技術を借用して、ディープラーニングを通じたエンドツーエンドの音楽音声生成の最新の進展を強調しています。音楽作曲におけるステムの整合性の課題を重視し、抽象的な調整に頼る従来のモデルに対する批判を行っています。音楽のコンテキストに対して反応するためのモデルに非自己回帰型のトランスフォーマーベースのアーキテクチャを使用するトレーニングパラダイムを提案しています。モデルの評価には、客観的な指標、音楽情報検索ディスクリプタ、および聴取テストが必要です。 この手法では、音楽生成に非自己回帰型のトランスフォーマーベースのモデルを使用し、別個の音声エンコーディングモデルで残差ベクトル量子化を組み合わせています。複数の音声チャンネルを連結された埋め込みを介して単一のシーケンス要素に組み合わせます。トレーニングにはマスキング手法が使用され、強化された音声コンテキストの整合性を向上させるためにトークンサンプリング中にクラシファイアフリーガイダンスが使用されます。フレーシェ音声距離や音楽情報検索ディスクリプタ距離などの客観的な指標によってモデルのパフォーマンスが評価されます。生成されたサンプルを実際のステムと比較することで評価が行われます。 この研究では、標準的な指標や音楽情報検索ディスクリプタアプローチ(FADやMIRDDなど)を使用して生成されたモデルを評価しています。実際のステムとの比較により、モデルは最先端のテキスト条件付きモデルと同等の音声品質を達成し、音楽のコンテキストに強い音楽的な整合性を示しています。音楽のトレーニングを受けた参加者を対象としたMean Opinion Scoreテストは、このモデルが現実的な音楽の結果を生成する能力を確認しています。生成されたステムと実際のステムの分布整合性を評価するMIRDDは、音楽の一貫性と整合性の尺度となります。 まとめると、行われた研究は以下のように要約できます: この研究では、音楽のコンテキストに応答できる生成モデルの新しいトレーニングアプローチを提案しています。 このアプローチは、トランスフォーマーバックボーンを持つ非自己回帰言語モデルと、未検証の2つの改良点(マルチソースのクラシファイアフリーガイダンスと反復デコーディング中の因果バイアス)を導入しています。 これらのモデルは、オープンソースおよび独自のデータセットでトレーニングすることで最先端の音声品質を達成しています。 標準的な指標や音楽情報検索ディスクリプタのアプローチによって最先端の音声品質が検証されています。 Mean Opinion Scoreテストは、モデルが現実的な音楽の結果を生成する能力を確認しています。

「2023年、オープンLLMの年」

2023年には、大型言語モデル(Large Language Models、LLMs)への公衆の関心が急増しました。これにより、多くの人々がLLMsの定義と可能性を理解し始めたため、オープンソースとクローズドソースの議論も広範な聴衆に届くようになりました。Hugging Faceでは、オープンモデルに大いに興味を持っており、オープンモデルは研究の再現性を可能にし、コミュニティがAIモデルの開発に参加できるようにし、モデルのバイアスや制約をより簡単に評価できるようにし、チェックポイントの再利用によってフィールド全体の炭素排出量を低減するなど、多くの利点があります(その他の利点もあります)。 では、オープンLLMsの今年を振り返ってみましょう! 文章が長くなりすぎないようにするために、コードモデルには触れません。 Pretrained Large Language Modelの作り方 まず、大型言語モデルはどのようにして作られるのでしょうか?(もし既に知っている場合は、このセクションをスキップしてもかまいません) モデルのアーキテクチャ(コード)は、特定の実装と数学的な形状を示しています。モデルのすべてのパラメータと、それらが入力とどのように相互作用するかがリストとして表されます。現時点では、大部分の高性能なLLMsは「デコーダーのみ」トランスフォーマーアーキテクチャのバリエーションです(詳細は元のトランスフォーマーペーパーをご覧ください)。訓練データセットには、モデルが訓練された(つまり、パラメータが学習された)すべての例と文書が含まれています。したがって、具体的には学習されたパターンが含まれます。ほとんどの場合、これらの文書にはテキストが含まれており、自然言語(例:フランス語、英語、中国語)、プログラミング言語(例:Python、C)またはテキストとして表現できる構造化データ(例:MarkdownやLaTeXの表、方程式など)のいずれかです。トークナイザは、訓練データセットからテキストを数値に変換する方法を定義します(モデルは数学的な関数であり、したがって入力として数値が必要です)。トークン化は、テキストを「トークン」と呼ばれるサブユニットに変換することによって行われます(トークン化方法によっては単語、サブワード、または文字になる場合があります)。トークナイザの語彙サイズは、トークナイザが知っている異なるトークンの数を示しますが、一般的には32kから200kの間です。データセットのサイズは、これらの個々の「原子論的」単位のシーケンスに分割された後のトークンの数としてよく測定されます。最近のデータセットのサイズは、数千億から数兆のトークンに及ぶことがあります!訓練ハイパーパラメータは、モデルの訓練方法を定義します。新しい例ごとにパラメータをどれだけ変更すべきですか?モデルの更新速度はどのくらいですか? これらのパラメータが選択されたら、モデルを訓練するためには1)大量の計算パワーが必要であり、2)有能な(そして優しい)人々が訓練を実行し監視する必要があります。訓練自体は、アーキテクチャのインスタンス化(訓練用のハードウェア上での行列の作成)および上記のハイパーパラメータを使用して訓練データセット上の訓練アルゴリズムの実行からなります。その結果、モデルの重みが得られます。これらは学習後のモデルパラメータであり、オープンな事前学習モデルへのアクセスに関して多くの人々が話す内容です。これらの重みは、推論(つまり、新しい入力の予測やテキストの生成など)に使用することができます。 事前学習済みLLMsは、重みが公開されると特定のタスクに特化または適応することもあります。それらは、「ファインチューニング」と呼ばれるプロセスを介して、ユースケースやアプリケーションの出発点として使用されます。ファインチューニングでは、異なる(通常はより専門化された小規模な)データセット上でモデルに追加の訓練ステップを適用して、特定のアプリケーションに最適化します。このステップには、計算パワーのコストがかかりますが、モデルをゼロから訓練するよりも財政的および環境的にはるかにコストがかかりません。これは、高品質のオープンソースの事前学習モデルが非常に興味深い理由の一つです。コミュニティが限られたコンピューティング予算しか利用できない場合でも、自由に使用し、拡張することができます。 2022年 – サイズの競争からデータの競争へ 2023年以前、コミュニティで利用可能だったオープンモデルはありましたか? 2022年初頭まで、機械学習のトレンドは、モデルが大きければ(つまり、パラメータが多ければ)、性能が良くなるというものでした。特に、特定のサイズの閾値を超えるモデルは能力が向上するという考えがあり、これらの概念はemergent abilitiesとscaling lawsと呼ばれました。2022年に公開されたオープンソースの事前学習モデルは、主にこのパラダイムに従っていました。 BLOOM(BigScience Large Open-science…

「MongoDBの時系列コレクションとAmazon SageMaker Canvasで洞察力の向上を加速する」

これは、MongoDBのBabu Srinivasanと共同執筆したゲスト投稿です現在の急速に変化するビジネスの風景では、リアルタイムの予測を行う能力の欠如は、正確かつタイムリーな洞察に重要な依存をする産業にとって、重要な課題をもたらしますさまざまな産業におけるリアルタイムの予測の欠如は、意思決定に重要な影響を与える切迫したビジネスの課題を提起します

AIアドバイザーと計画ツール:金融、物流、それ以上を変革する

「AIアドバイザーやプランニングツールが金融、物流、医療、教育の根本的な変革を遂げる方法を探索してくださいこれらのAIシステムがどのようにデータ駆動の洞察を提供し、複雑なプロセスを最適化し、未来を形作っているのか学んでください」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us