Learn more about Search Results Introduction to Python - Page 16
- You may be interested
- 「AIシステムのリスク評価方法を学びまし...
- DeepMind RoboCat:自己学習ロボットAIモデル
- 私の物理学の博士号へのオード
- 「ChatGPTでより説得力を持つようになろう」
- StackOverflowの転機:破壊から機会への転換
- 機械学習において決定木とランダムフォレ...
- MFAバイパス攻撃に対する懸念が高まってい...
- 初心者におすすめのベストオンラインビジ...
- 「データサイエンスにおける頻度論者とベ...
- 新しいAIの研究がコンピュータビジョンを...
- 「AWSサービスを使用して完全なウェブアプ...
- 「大規模な言語モデルは、多肢選択問題の...
- このMITのAI論文では、ロボット操作に革新...
- 「場所の言語:生成AIのジオコーディング...
- 「Covid-19の感情分析」
「2024年に試してみるべき5つの最高のベクターデータベース」
トップのベクトルデータベースは、AIアプリケーションにおけるベクトル埋め込みの保存、インデックス付け、クエリ処理において、その汎用性、パフォーマンス、拡張性、一貫性、効率的なアルゴリズムで知られています
大規模展開向けのモデル量子化に深く掘り下げる
イントロダクション AIにおいて、大規模なモデルをクラウド環境に展開するという2つの異なる課題が浮かび上がっています。これにより、スケーラビリティと収益性を阻害するかなりの計算コストが発生し、複雑なモデルをサポートするのに苦労するリソース制約のあるエッジデバイスの問題も生じます。これらの課題の共通点は、精度を損なうことなくモデルのサイズを縮小する必要性です。一つの解決策となる人気のある手法であるモデルの量子化は、精度のトレードオフの懸念を引き起こします。 量子化意識トレーニングは、魅力的な答えとして浮上します。これは、モデルのトレーニングプロセスに量子化をシームレスに統合することで、重要な精度を保ちながら、モデルのサイズを大幅に削減することを可能にします。時には2倍から4倍以上にもなります。この記事では、量子化について詳しく解説し、ポストトレーニング量子化(PTQ)と量子化意識トレーニング(QAT)を比較します。さらに、Deciによって開発されたオープンソースのトレーニングライブラリ「SuperGradients」を使用して、両方の方法を効果的に実装する方法を実践的に示します。 また、モバイルや組み込みプラットフォームにおける畳み込みニューラルネットワーク(CNN)の最適化についても探求します。サイズと計算要件のユニークな課題に取り組み、モデルの最適化における数値表現の役割を検討します。 学習目標 AIにおけるモデルの量子化の概念を理解する。 一般的な量子化レベルとそのトレードオフについて学ぶ。 量子化意識トレーニング(QAT)とポストトレーニング量子化(PTQ)の違いを認識する。 メモリ効率やエネルギー削減など、モデルの量子化の利点を探求する。 モデルの量子化が広範なAIモデルの展開を可能にする方法を発見する。 この記事はData Science Blogathonの一部として掲載されました。 モデルの量子化の必要性の理解 モデルの量子化は、ディープラーニングにおける基本的な技術であり、モデルのサイズ、推論速度、およびメモリ効率に関連する重要な課題に対処することを目指しています。これは、モデルの重みを高精度の浮動小数点表現(通常は32ビット)から低精度の浮動小数点(FP)または整数(INT)フォーマット(16ビットまたは8ビットなど)に変換することによって実現されます。 量子化の利点は二つあります。まず第一に、モデルのメモリフットプリントを大幅に削減し、大きな精度の劣化を引き起こすことなく推論速度を向上させます。さらに、メモリ帯域幅の要件を減らし、キャッシュの利用効率を向上させることによって、モデルのパフォーマンスも最適化されます。 INT8表現は、ディープニューラルネットワークの文脈では「量子化された」と俗に言われることがありますが、ハードウェアアーキテクチャに応じてUINT8やINT16のような他のフォーマットも利用されます。異なるモデルは、精度とモデルサイズの削減のバランスを取るために、異なる量子化アプローチを必要とし、事前知識と緻密な微調整を要することがしばしば求められます。 量子化は、特にINT8などの低精度の整数フォーマットにおいて、動的レンジが制限されているため、課題をもたらします。FP32の広範な動的レンジをINT8の255個の値に押し込めることは、精度の低下を招く可能性があります。この課題を緩和するために、パーチャネルまたはパーレイヤのスケーリングにより、重みと活性化テンソルのスケールとゼロポイント値が、より適した量子化フォーマットに適合するように調整されます。 さらに、量子化意識トレーニングでは、モデルのトレーニング中に量子化プロセスをシミュレートすることで、モデルが優れた精度で低精度に適応することが可能になります。このプロセスの重要な側面であるスクイーズ(またはレンジの推定)は、キャリブレーションによって実現されます。 本質的には、モデルの量子化は効率的なAIモデルの展開に不可欠であり、特に計算リソースが限られているエッジデバイスでの資源効率と精度の微妙なバランスを取るために重要です。 モデルの量子化の技術 量子化レベル 量子化は、モデルの高精度浮動小数点の重みと活性化を、低精度の固定小数点値に変換します。 “量子化レベル”は、これらの固定小数点値を表すビット数を指します。一般的な量子化レベルは、8ビット、16ビット、およびバイナリ(1ビット)の量子化です。適切な量子化レベルを選択することは、モデルの精度とメモリ、ストレージ、および計算効率とのトレードオフに依存します。…
「Pyroを使ったベイジアンABテスト」
この記事は、Pythonの確率プログラミング言語(PPL)であるPyroを使用したABテストの入門ですこれはPyMCの代替手段ですこの記事を書く動機は、私の…
「FP8を用いたPyTorchトレーニング作業の高速化」
過去数年間、AIの分野では革命的な進展が見られており、特に最近のChatGPTなどのLLMベースのアプリケーションの人気と普及を最もよく表していますこれらは...
「線形代数からディープラーニングまで 7冊の本(2023年冬のアップデート)」
「Towards Data Science」への初めての投稿では、私は線形代数から現代のディープラーニングまで、あらゆる内容をカバーする私のお気に入りの機械学習の本について書きました
「データから次に最適な質問をどのようにして決定木が知るのか?」
決定木は、分類と回帰の両方の問題を解決することができる多目的な機械学習アルゴリズムですデータの特徴に基づいて質問をすることで、意思決定をします...
データ分析の最適化:DatabricksにGitHub Copilotを統合する
Databricksでのデータ分析のためのAIパワードペアプログラミングツールを統合することで、開発プロセスが最適化され、合理化され、開発者の時間を革新のために解放します
「2023年におけるトレーニング・テスト・検証分割の包括的なガイド」
イントロダクション 監督学習の目標は、新しいデータセットで良いパフォーマンスを発揮するモデルを構築することです。問題は、新しいデータを持っていないかもしれないが、トレイン・テスト・バリデーションの分割のような手順でこれを体験することができるということです。 データセットでモデルのパフォーマンスを見ることは興味深いですよね。そうです!献身的に取り組んでいることが、効率的な機械学習モデルの作成と効果的な結果の生成にどのように活かされているかを確認するのに最適な側面の一つです。 トレイン・テスト・バリデーションの分割とは何ですか? トレイン・テスト・バリデーションの分割は、機械学習とデータ分析において特にモデル開発中に基本的な役割を果たします。これは、データセットをトレーニング、テスト、バリデーションの3つのサブセットに分割することを意味します。トレイン・テストの分割は、新しいデータセットでモデルのパフォーマンスを確認するためのモデル検証プロセスです。 トレイン・テスト・バリデーションの分割は、機械学習モデルが新しい未知のデータに一般化する能力を評価します。また、過学習を防ぎます。過学習とは、モデルがトレーニングデータ上でうまく機能するが、新しいインスタンスに一般化できない状態です。バリデーションセットを使用して、開発者はモデルのパラメータを反復的に調整して、未知のデータでのパフォーマンスを向上させることができます。 機械学習におけるデータ分割の重要性 データ分割は、データセットをトレーニング、バリデーション、テストのサブセットに分割することを意味します。データ分割の重要性は以下の側面にわたります: トレーニング、バリデーション、テスト データ分割は、データセットをトレーニングセット、モデルのパラメータを追跡して過学習を回避するためのバリデーションセット、新しいデータでのモデルのパフォーマンスをチェックするためのテストセットの3つのサブセットに分割します。各サブセットは、機械学習モデルの開発の反復プロセスで独自の目的を果たします。 モデルの開発と調整 モデルの開発フェーズでは、トレーニングセットはアルゴリズムにデータ内のさまざまなパターンを示すために必要です。モデルはこのサブセットから学習し、エラーを最小化するためにパラメータを調整します。バリデーションセットはハイパーパラメータの追跡中に重要であり、モデルの構成を最適化するのに役立ちます。 過学習の防止 過学習は、モデルがトレーニングデータを適切に学習し、ノイズや関連性のないパターンを捉える状態です。バリデーションセットはチェックポイントとして機能し、過学習の検出に役立ちます。異なるデータセットでモデルのパフォーマンスを評価することで、過学習を防ぐためにモデルの複雑性や技術、他のハイパーパラメータを調整することができます。 パフォーマンス評価 テストセットは、機械学習モデルのパフォーマンスにとって重要です。トレーニングとバリデーションの後、モデルはテストセットに対して現実世界のシナリオをチェックします。テストセットでの良好なパフォーマンスは、新しい未知のデータにモデルが成功裏に適応したことを示します。このステップは、モデルを実際のアプリケーションに展開するための信頼を得るために重要です。 バイアスと分散の評価 トレイン・テスト・バリデーションの分割は、バイアスのトレードオフを理解するのに役立ちます。トレーニングセットはモデルのバイアスに関する情報を提供し、固有のパターンを捉えます。一方、バリデーションとテストセットはばらつきを評価し、データセットの変動に対するモデルの感度を示します。適切なバイアスと分散のバランスをとることは、異なるデータセット全体でうまく一般化するモデルを実現するために重要です。 頑健性のためのクロスバリデーション トレイン・バリデーション・テストのシンプルな分割だけでなく、k-foldクロスバリデーションのような手法は、モデルの頑健性をさらに高めます。クロスバリデーションは、データセットをk個のサブセットに分割し、k-1個のサブセットでモデルをトレーニングし、残りの1つでバリデーションを行います。このプロセスをk回繰り返し、結果を平均化します。クロスバリデーションは、データの異なるサブセットでのモデルのパフォーマンスをより包括的に理解するのに役立ちます。 モデルのパフォーマンスにおけるデータ分割の重要性 データ分割の重要性は以下の目的であります: モデルの汎化性評価 モデルはトレーニングデータだけを記憶すべきではありません、汎化性能も重要です。データ分割により、テスト用のデータセットを作成し、モデルが新しいデータに対してどれくらい上手く動作するかを確認することができます。専用のテストデータセットがないと、過学習のリスクが高まります。モデルがトレーニングデータに過度に適応すると、そのリスクを軽減するために、データ分割が真の一般化能力を評価します。…
「ストリーミングLLMの紹介 無限長の入力に対するLLM」
リアルタイム生産におけるLLMの新しいアプローチ
「大型言語モデルを使用して開発するために知っておくべきすべて」
この記事の目的は、簡単な言葉でLLMベースのアプリケーション開発に必要な主要なテクノロジーを説明することですさらなる学習のために多くの有用なリンクも提供されていますそれは行く...
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.