Learn more about Search Results Azure - Page 16

未来のマスタリング:IaC技術を活用したLLM生成データアーキテクチャの評価

この記事では、LLMの適用性について取り上げますインフラストラクチャのプロビジョニングから構成管理、展開に至るまで、実際のアプリケーションのライフサイクルを活用するものです

微調整、再教育、そして更なる進化:カスタムLLMで前進

イントロダクション ほとんどの方はすでにChatGPTを使用したことがあると思います。それは素晴らしいことです。なぜなら、この記事で私たちが始める旅の最初のステップを踏んでくれたからです!新しい技術をマスターするには、まずそれを使ってみることが重要です。それは水に飛び込んで泳ぎを覚えるようなものです!🏊‍♂️ もしGenAIを探求したいのであれば、現実の問題を選び、それを解決するためのアプリケーションの構築を始めてください。GenAIの中心にあるのは、ファウンデーションモデル(FM)とも呼ばれる大規模言語モデル(LLM)です。 モデルの消費者、調整者、ビルダーについては聞いたことがあるかもしれませんが、さらに詳しく説明します。 McKinseyは、それを受け手、形作り手、創り手として捉えており、GenAI Recogniseセッションで言及しています。 この記事では、それぞれのレイヤーを詳しく見ていきます。 プラットフォームの増殖を使用例として それをさらに詳しく掘り下げるために、すべてがはっきりとわかる実例に目を向けましょう。現代のテクノロジーの風景では、ほとんどのアプリが複数のプラットフォームで動作する必要があることは当然です。しかし、その中には注意点があります。各プラットフォームには独自のインターフェースと特異性があります。追加のプラットフォームへのアプリケーションのサポート拡張とそのようなマルチプラットフォームアプリケーションのメンテナンスは同じくらい困難です。 しかし、そこでGenAIが駆けつけて救いの手を差し伸べます。GenAIは、プラットフォームに関係なく、アプリケーションのために統一されたユーザーフレンドリーなインターフェースを作成することを可能にします。その魔法の材料は何でしょうか?大規模言語モデル(LLM)がこのインターフェースを自然で直感的な言語に変換するのです。 Linux、Windows、Macコマンド さらに理解を深めるために、例えば私たちのマシンがLinux、Windows、またはMacである場合に、異なるシナリオごとに実行すべき正確なコマンドを知りたいとしましょう。以下の図は1つのシナリオを示しています: エンドユーザーとアプリケーション開発者への価値 エンドユーザーとしては、各プラットフォームごとのコマンドを学び/知る必要がなく、自然かつ直感的に作業を完了できます。アプリケーションの開発者としては、ユーザーに見えるアプリケーションのインターフェースを、それぞれのサポートされるプラットフォームに明示的に変換する必要はありません。 参照アーキテクチャ Open AIやAzure Open AIなどのさまざまなプロバイダーが提供するクラウドには、GPT3、GPT3.5、およびGPT4を含む複数のLLMが存在します。これらは補完、チャット補完などのさまざまなAPIを介して簡単にアクセスできます。 AIオーケストレータは、モデルとプロバイダー間のモデルとモデルの統一化されたアクセスをさらにシームレスにします。そのため、GenAIアプリケーションは、基礎となるプロバイダーやモデルと直接対話するのではなく、AIオーケストレータと対話します。そして、アプリケーションが必要とするように、構成可能で、または複数の基礎となるプロバイダーやモデルとのオーケストレーションを処理します。 柔軟性とモジュラリティのために、アプリケーションがサポートする各プラットフォームにはプラグインを持つことができます。これから続くセクションでは、これらのプラグインとオーケストレータで行えることについて詳しく説明します。 最後に、アプリケーションにはGenAIによって生成されたコマンドを実行するためにサポートするプラットフォームとの接続があります。 参照テクノロジー AIオーケストレータ:…

「Microsoft AIが意図せずに秘密の情報を公開し、3年間にわたって38TBの機密データへのアクセス権を提供しました」

「過剰供給されたSASトークンが、約3年間にわたってGitHub上で38TBもの大量の個人データを公開していた物語」

医療現場におけるAIの潜在能力の開放 (Iryō genba no AI no senzai nōryoku no kaihō)

データは医学の実践と看護の提供において基本的な要素ですこれまで、医師や医療制度は利用可能で計算可能なデータの不足により制約を受けていましたが、世界の医療制度がデジタル化の変革を遂げている今、状況は変わりつつあります今日の医療は、患者ケアと科学の交差点に存在するだけでなく、[…] (Please note that patient care and science in the last sentence were left untranslated, as they are common terms used in the field…

イノベーションを推進するための重要なツール:データレイクハウスにおけるジェネラティブAIの向上

LLMおよびジェネレーティブAIアプリの登場により、データは全エコシステムの中心的な要素となっています本記事では、データレイクハウスの上でAIアプリをサポートするツールについて議論します

「ODSC West AIエキスポであなたのAIの解決策を見つけよう」

数週間後のODSC Westの一環として開催されるAI Expo and Demo Hallでは、Microsoft Azure、Hewlett Packard、Iguazio、neo4j、Tangent Works、Qwak、Clouderaなどの業界大手組織の代表者と直接会う機会がありますまた、最新のNLPツールについても学ぶことができます

「フリーODSCウェストオープンパス」を紹介します

「オープンデータとデータサイエンス、AIコミュニティの成長のために、私たちは喜んでお知らせします今年10月30日から11月2日に行われるODSCウエストでは、参加者全員に無料のODSCオープンパスを提供しています参加経験のない方々にとっては...」

「ジェンAIの時代:新たな始まり」

イントロダクション 急速に進化するテクノロジーの世界で、我々は新たな時代の予感に包まれています。それは、かつて人間にしか備わっていなかったような知性を持つかのように見える機械が存在する時代です。私たちはこの時代を、「ジェン・AI時代」と呼びたいと思います。この時代は、AIの成長の継続だけでなく、本当に変革的なものの始まりを象徴しています。この記事では、大規模言語モデル(LLM)の成長、それらの実用的な企業ソリューションでの応用、それらを支えるアーキテクチャやサービス、そしていくつかの優れたLLMの比較について詳しく掘り下げていきます。 学習目標: 大規模言語モデル(LLM)の成長と採用の拡大、およびジェン・AI時代の到来における役割を理解する。 LLMの実用的な企業ソリューションでの応用(コンテンツ生成、データ要約、さまざまな産業の自動化など)を特定する。 LLMの使用に関連する倫理的考慮事項と責任あるAIの実践について、ガイドライン、データプライバシー、従業員の意識などを理解する。 大規模言語モデル(LLM)の成長を探る LLMの実用的な応用に入る前に、この分野が最近どれほど成長してきたかを理解することが重要です。LLMは、マイクロソフトやグーグルなどの企業がその開発に多額の投資をしていることで、テック界隈を席巻しています。LLM APIを試験的に利用する企業数は急増しており、自然言語処理(NLP)とLLMの採用も増加しており、年間成長率は驚異の411%です。 特にインドはLLMへの投資のホットスポットとなっており、マイクロソフトやグーグルなどの主要プレイヤーがこの領域で大きな進展をしています。テック巨人たちは互いに優れたモデルを作り出すことを競い合っており、その結果、テック・マヒンドラの「インダス」というインド特化のカスタムLLMなどのイノベーションが生まれています。リライアンスもLLMレースに参入し、インド固有のアプリケーションに注力しています。この関心と投資の増加は、ジェン・AI時代の幕開けを告げています。 企業ソリューションにおけるLLMの実用的な応用 ここからは、企業ソリューションにおけるLLMの実用的な応用に焦点を移しましょう。消費者がLLMを詩やレシピの生成などの創造的なタスクに使用するのとは異なり、企業世界は異なるニーズを持っています。ここでの応用範囲は、詐欺検出のための財務データの分析から、営業やマーケティングにおける顧客行動の理解まで多岐にわたります。LLMは、コンテンツの生成、応答の自動化、さまざまなビジネス領域(金融、人事、法務、保険など)での意思決定プロセスの支援において重要な役割を果たしています。 LLMベースのソリューションのアーキテクチャとサービス LLMベースのソリューションのアーキテクチャは複雑でありながら魅力的です。LLMは要約と検索モデルです。効率的にコンテンツを処理するためには、プロンプトでそのフォーカスを定義し、トークンでコンテンツを処理する必要があります。アーキテクチャでは、Form RecognizerやFAISS Indexなどのサービスを使用して、大量のドキュメントをベクトル化して格納します。これらのサービスは、ユーザーが定義したプロンプトに基づいて類似性検索を行い、正確な応答を提供します。言語モデルとクラウドサービスの選択は、ドキュメントのサイズや場所などの要素によって異なります。 LLMの比較:OpenAI、マイクロソフト、グーグルなど OpenAI、マイクロソフト、グーグルなどのLLMを比較すると、それらが提供する多様な能力と応用が明らかになります。OpenAIのモデルであるGPT-3は、Q&Aシナリオで優れたパフォーマンスを発揮します。一方、Codexは開発者向けに特化し、自然言語をコードに変換します。DALL-Eはプロンプトに基づいて画像を生成することに特化し、ChatGPT-4はチャットボットやコールセンターなどのアプリケーションに最適な会話エンジンです。 MicrosoftのLLMスイートには、GPT-3.5などのLLMが含まれており、これらはForm Recognizerなどの他のAzureサービスと組み合わせてエンドツーエンドのソリューションを提供しています。Microsoftは、消費者の検索、マッチング、およびメール管理に焦点を当てつつ、チームやコールセンターなどの他の領域にも徐々に拡大しています。 一方、Googleは、 BARDなどのモデルを使用し、消費者および法人のニーズに対応しています。彼らの基本モデルはテキスト、チャット、コード、画像、ビデオをサポートし、会話型AIからエンタープライズ検索、Vortex AIを介したエンドツーエンドのソリューションまでさまざまなアプリケーションに対応しています。 これらの巨大なLLM以外にも、LLaMA-1-7B、Falcon、WizardLMなどの他のLLMも独自の機能とパラメータを備えています。LLMが真実の回答を提供することを保証することは、信頼性を評価する上で重要な要素です。…

現代の生成的AIアプリケーションにおけるベクトルデータベースの役割

大規模な生成AIアプリケーションがうまく機能するためには、多くのデータを処理できる良いシステムが必要ですそのような重要なシステムの一つが、ベクトルデータベースですこのデータベースは特別なもので、テキスト、音声、画像、動画などの多様なデータを数値/ベクトル形式で扱いますベクトルデータベースとは何ですか?ベクトルデータベースは、...

「AWS上でクラウドネイティブなフェデレーテッドラーニングアーキテクチャを再発明する」

このブログでは、AWS上でクラウドネイティブなFLアーキテクチャを構築する方法を学びますAWSのインフラストラクチャとコード(IaC)ツールを使用することで、簡単にFLアーキテクチャを展開することができますまた、クラウドネイティブアーキテクチャは、確かなセキュリティと運用の優れたAWSサービスのさまざまな利点を最大限に活用し、FLの開発を簡素化します

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us