Learn more about Search Results 14 - Page 16

dbtコア、Snowflake、およびGitHub Actions データエンジニアのための個人のプロジェクト

これは、Data/Analyticsエンジニア向けの簡単で高速なプロジェクトですdbt Core、Snowflake、Fivetran、およびGitHub Actionsなどの最新のデータスタックツールを試してみたい方にお勧めですハンズオン形式で行います...

「ベクターデータベースのベンチマークには、ストリーミングワークロードを使用してください」

「ベクトルデータベースは、高次元ベクトルの検索のために構築されています現在、多くのベクトルは、GPTやCLIPなどの深層ニューラルネットワークによって生成された埋め込みで、テキストのようなデータポイントを表現します...」

開発者の生産性向上:DeloitteのAmazon SageMaker Canvasを用いたノーコード/ローコード機械学習の活用方法

今日のデータ駆動型の世界では、機械学習(ML)モデルを素早く構築し展開する能力がますます重要になっていますしかし、MLモデルの構築には時間と労力、特殊な専門知識が必要ですデータの収集やクリーニングから特徴エンジニアリング、モデルの構築、調整、展開まで、MLプロジェクトは開発者にとって数か月かかることがよくありますそして経験豊富なデータ[...]

サークルブームのレビュー:最高のAIパワードソーシャルメディアツール?

「サークルブームの参考文献として、サークルブームの力を発見してみてくださいそれは最高のAIパワードソーシャルメディアツールですか?」

予測モデルの構築:Pythonにおけるロジスティック回帰

著者によるイメージ 機械学習を始めるとき、ロジスティック回帰は最初にツールボックスに追加するアルゴリズムの一つですこれはシンプルで頑健なアルゴリズムであり、主に2値分類の課題に使用されます0と1の2つのクラスを持つ二値分類問題を考えますロジスティック回帰はロジスティックまたは...

「イノベーションと持続可能性のバランス:病理学における環境責任に対する現実的なアプローチ」

この研究は、病理学における重大な懸念である深層学習の炭素排出量(CO2eq)に焦点を当てています。この環境への影響は、医療応用における深層学習の広範な普及において潜在的な障害となります。そのため、持続可能な取り組みの迫切な必要性が生じています。世界は医療の技術革新にますます依存する中で、環境への影響を理解し、軽減することが重要です。 現在の深層学習モデルアーキテクチャの軌跡は、複雑さの増大という傾向を示しています。異なる機関からの研究者チームは、この発展とその環境への潜在的な影響を詳細に調査しています。しかし、彼らはモデル選択における戦略的な転換を提案することで、説得力のある解決策を提示しています。研究者たちは、最新かつ最大のモデルに重点を置くのではなく、計算量の少ないモデルを優先することを提案しています。この戦略的アプローチにより、エネルギー消費を削減し、モデルの最適なパフォーマンスを維持しながら、計算効率を向上させるために、不要なパラメータを外科的に除去するモデル削減の概念が導入されます。 提案された解決策は、技術革新と環境責任をバランスさせるためのいくつかの重要な戦略から成り立っています。重要な側面のひとつは、特に病理学において大型の全スライド画像(WSIs)が一般的である場合、入力データの削減です。研究者たちは、専用の組織検出深層学習モデルによる組織のない領域の自動的な除外を推奨しています。さらに、研究は、組織内で最小限に必要な領域(ROI)の選択の重要性を強調しており、プロセスをさらに効率化し、排出物を大幅に削減しています。 計算量の少ないモデルを選択することの重要性は、深層学習の環境への影響に深い影響を与えます。研究者たちは、新しいかつ大きなモデルが常に以前のモデルに比べて優れているという仮定が特定のタスクにおいては成り立たない可能性があると主張しています。以前の調査結果によれば、より単純な深層学習モデルは、さまざまな病理学のタスクにおいて、より高度なモデルと比較して同等またはより優れたパフォーマンスを発揮することができると示唆されています。特に、トレーニング可能なパラメータが少ない相対的にシンプルな深層学習モデルは、より深いモデルよりも優れたCO2eq排出量を大幅に削減しながら、性能を維持します。 さらに、研究はモデル剪定という概念を導入し、持続可能性を向上させる別の手段としています。モデル剪定とは、非必須のパラメータを戦略的に除去することを指し、研究チームの調査結果によれば、最大40%の剪定を施した分類モデルは、剪定を施さない対照群と比較して、同じ精度を保ちながらCO2eq排出量を20〜30%削減することができました。この発見は、環境に持続可能な深層学習を確保するための戦略的なモデル開発の重要性を示しています。 結論として、この研究は、技術の進歩と病理学における環境責任との重要な交差点を浮かび上がらせています。提案された手法は、効率を損なうことなく、深層学習の生態学的影響に取り組むための実用的で環境に配慮したアプローチを提供しています。医療コミュニティが技術革新を進めるにあたり、この研究は、研究者や産業が持続可能性を優先し、イノベーションを追求するためのパラダイムシフトを呼びかける旗印となります。これらの実践を採用することで、医療技術の限界を押し広げながら環境への影響を軽減する微妙なバランスが実現され、より持続可能な医療革新の未来が保証されます。

予測保全の理解-波データ 特徴エンジニアリング(パート2)

この記事はWave Data Feature Engineeringに関する第2部です今回はスペクトル特徴に焦点を当てます追加で考えがあれば、どんどん共有してください!全体をチェックしてください...

Pythonでのデータサイエンスの線形代数講座

数学の一分野である線形代数は、データサイエンスにおいて非常に役立ちます線形代数を使うことで、大量のデータに数学的な操作を行うことができます機械学習で使用されるほとんどのアルゴリズムも線形代数を使用しています

「Amazon Titanを使用して簡単に意味論的画像検索を構築する」

デジタル出版社は、品質を損なうことなく、新しいコンテンツを迅速に生成・公開するために、常にメディアワークフローを効率化・自動化する方法を探し続けていますテキストの本質を捉えるために画像を追加することは、読む体験を向上させることができます機械学習技術を使うことで、そのような画像を発見することができます「印象的な画像は...」

「SageMakerキャンバスモデルリーダーボードを使用して、高度な設定を持つ機械学習モデルを構築し、評価します」

「Amazon SageMaker Canvas は、アナリストや市民データサイエンティストが、自身のビジネスニーズに合わせた正確な機械学習(ML)の予測を生成するためのノーコードの作業スペースです今日から、SageMaker Canvas は、アンサンブルまたはハイパーパラメータの最適化といった高度なモデルビルドの設定、トレーニングと検証データの分割比率のカスタマイズなどをサポートしています」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us