Learn more about Search Results ページ - Page 16

「人工知能と気候変動」

「多くの場合、私たちは気候変動に関連付けられた雑誌やニュースの天候エピソードを見たり、聞いたり、読んだりしますが、すべての出来事がこの現象と関連しているわけではありませんたとえば、…」

一時的なグラフのベンチマーク (Ichijiteki na gurafu no benchimāku)

最近では、公開データセットや標準化された評価プロトコルの提供により、静的グラフにおける機械学習において重大な進展がなされています

「パリを拠点とするスタートアップであり、OpenAIの競合他社であるMistral AIの評価額は20億ドルです」

ヨーロッパの人工知能セクターにとって重要な進展となりますが、パリに拠点を置くスタートアップ企業であるミストラルAIが注目すべきマイルストーンを達成しました同社は4億5000万ユーロの大規模な投資を成功裏に獲得し、その評価額を2億ドルという印象的な数字に押し上げましたこの資金調達ラウンドは、ミストラルAIだけでなく、急成長している人工知能業界にとっても転換点となる重要な瞬間です

「ジェネレーティブAI 2024年とその先:未来の一瞥」

「ジェネレーティブAIファブリックの台頭から倫理が新しいNFRとなるまで、ジェネレーティブAI技術が2024年にもたらすものを探ってみましょう」

AMD + 🤗 AMD GPUでの大規模言語モデルの即戦力アクセラレーション

今年早些时候,AMD和Hugging Face宣布合作伙伴关系在AMD的AI Day活动期间加速AI模型。我们一直在努力实现这一愿景,并使Hugging Face社区能够在AMD硬件上运行最新的AI模型,并获得最佳性能。 AMD正在为全球一些最强大的超级计算机提供动力,其中包括欧洲最快的超级计算机LUMI,该计算机拥有超过10,000个MI250X AMD GPUs。在这次活动中,AMD公布了他们最新一代的服务器级GPU,AMD Instinct™ MI300系列加速器,很快将正式推出。 在本博客文章中,我们将提供关于在AMD GPUs上提供良好开箱即用支持以及改进与最新服务器级别的AMD Instinct GPUs互操作性的进展报告。 开箱即用加速 你能在下面的代码中找到AMD特定的代码更改吗?别伤眼睛,跟在NVIDIA GPU上运行相比,几乎没有。 from transformers import AutoTokenizer, AutoModelForCausalLMimport torchmodel_id = "01-ai/Yi-6B"tokenizer…

「ジェミニ発表ビデオでグーグルが誤解を招いていると非難される」

人工知能の急速な進化が進む中で、Googleの最新のAIモデルGeminiの発表は、期待と論争を呼びましたAIの能力の限界を押し広げることで知られるこの大手テック企業は、最近Geminiのデモ動画を公開し、それが激しい論争の中心になりましたこの動画は、 […]

「2023年のトップ8のAIトレンド:年間レビュー」

葉っぱが金色に変わり、12月の寒さが広がる中、人工知能の領域で目覚ましい進歩が見られた今年を振り返る時が来ました。2023年は単なる進歩の年ではありませんでした。それはトライアンフの年であり、AIが成し遂げられる限界が繰り返し押し広げられ、再定義された年でした。LLM(大規模言語モデル)の能力における画期的な進展から、前例のないほど世界とのナビゲーションや相互作用が可能な自律エージェントの登場まで、この年はこの変革的な技術の無限の可能性を示すものでした。 この包括的な探求の中で、私たちは2023年のAIを定義した8つの主要なトレンドについて掘り下げ、産業を再構築し、未来を革命化する革新を明らかにしていきます。だから、AI愛好家の皆さん、私たちは技術史の記録に永遠に刻まれる一年についての旅に出発です。 RLHFとDPOの微調整 2023年は、大規模言語モデル(LLM)の能力を向上させるための重要な進展が見られました。2つの主要なアプローチが登場しました: 人間のフィードバックに基づく強化学習(RLHF):この手法は、人間のフィードバックを活用してLLMの学習プロセスをガイドし、持続的な改善と進化するユーザーのニーズや好みに対応させることができます。このインタラクティブなアプローチにより、LLMは複雑または主観的な領域において微妙な理解力と意思決定能力を開発することができます。 直接的な選好最適化(DPO)::DPOはよりシンプルな代替手法であり、明示的な強化信号を必要とせずにユーザーの選好に直接最適化します。このアプローチは効率性とスケーラビリティを重視し、より速い適応と展開を必要とするアプリケーションに最適です。そのすっきりした性格により、ユーザーフィードバックに基づいてLLMの振る舞いを迅速に調整することができ、進化する好みに合わせることができます。 RLHFとDPOはLLMの開発における重要な進展を表していますが、既存の微調整手法を置き換えるのではなく、補完するものです: 事前学習:大規模なテキストとコードのデータセットを用いてLLMを訓練し、一般的な言語理解能力を学習させること。 微調整:特定のタスクまたはデータセットに基づいてLLMをさらに訓練し、特定のドメインやアプリケーションに適した能力を調整すること。 マルチタスク学習:LLMを複数のタスクに同時に訓練することで、共有表現を学習し、各タスクのパフォーマンスを向上させること。 LLMの効率性に対処する LLMの能力が向上するにつれて、計算上の制約とリソースの限界が重要な懸念事項となりました。その結果、2023年の研究はLLMの効率性の向上に焦点を当て、以下のような技術の開発をもたらしました: FlashAttention:この革新的なアテンションメカニズムは、LLMの計算コストを大幅に削減します。これにより、より速い推論と訓練が可能になり、LLMをリソースに制約のある環境でより実用的に利用し、実世界のアプリケーションに統合することができるようになります。 LoRA および QLoRA:LoRAやQLoRAなどの手法は、2023年にも提案された軽量かつ効率的なLLMの微調整方法を提供します。これらの手法は、既存のLLMアーキテクチャに追加された小さなモジュールであるアダプターに依存し、再トレーニングすることなくカスタマイズを可能にします。これにより、著しい効率の向上、より速い展開時間、さまざまなタスクへの適応性の向上が実現されます。 これらの進展は、効率的なLLMへの需要の増大に対応し、この強力な技術への広範な導入の道を開き、結果としてこの技術へのアクセスを民主化することにつながります。 検索補完生成(RAG)の浸透 純LLMは巨大な可能性を秘めていますが、それらの正確性と実証的根拠に関する懸念は依然として存在しています。検索補完生成(RAG)は、既存のデータや知識ベースとLLMを組み合わせることで、これらの懸念に対処する有望な解決策として登場しました。このハイブリッドアプローチにはいくつかの利点があります: エラーの減少:外部情報から事実情報を取り込むことにより、RAGモデルはより正確で信頼性のある出力を生成することができます。 拡張性の向上:RAGモデルは純LLMに必要な大規模なトレーニングリソースの必要性を排除し、大規模なデータセットに適用することができます。 低コスト:既存の知識リソースを利用することにより、LLMのトレーニングおよび実行に関連する計算コストを削減することができます。 これらの利点により、RAGは検索エンジン、チャットボット、コンテンツ生成など、さまざまなアプリケーションにおける貴重なツールとして位置付けられています。 自律エージェント…

アジャイルなデータサイエンスプロジェクト管理を通じてAIコストを制御する

データサイエンスの世界は複雑で、予算的な制約を超える隠れたコストがありますデータサイエンティストは、どんな組織に対しても重要な投資です残念ながら、アイドル状態などの非効率さ…

ムーバブルインクのCEO兼共同創設者であるヴィヴェク・シャルマ氏についてのインタビュー・シリーズ

ビヴェクは2010年にムーバブルインクを共同設立し、急速な成長を遂げながら、600人以上の従業員を擁し、世界有数の革新的なブランドにサービスを提供しています彼のリーダーシップにより、ムーバブルインクはオムニチャネルデジタルマーケターを支援し、エンゲージメント時にデータ活性化され、行動に応じたクリエイティブを生成する力を与えていますムーバブルインクを共同設立する前に...

パーソナライズされたAIの簡単な作成方法:GPTの適応に向けたノーコードガイド

OpenAIは、カスタムChatGPTを作成するためのコード不要のアプローチで個人のAIカスタマイズを革新しています

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us