Learn more about Search Results エージェント - Page 16
- You may be interested
- BYOL-Explore ブートストラップ予測による...
- 「このAI研究は、グラフ上の大規模言語モ...
- 「アルゴリズムを使用して数千件の患者請...
- アマゾンセイジメーカーの地理情報能力を...
- 「日本政府、行政業務にChatGPT技術を採用...
- 「ビジネスにスピーチAIを導入する際に考...
- Google AIはWeatherBench 2を紹介します:...
- グラフの復活:グラフの年ニュースレター2...
- 推論:可観測性のAI主導の未来?
- 「回答を見つける(最良の回答を見つける...
- Salesforceは、データ駆動型のAIとCRMを通...
- 広大な化学空間で適切な遷移金属を採掘する
- RGBビデオから3Dビデオを作成する
- Hugging Faceの機械学習デモ(arXiv上)
- メタリサーチャーズがVR-NeRFを紹介:高精...
小さな言語モデル(SLM)とその応用について知るべきすべてのこと
大型言語モデル(LLM)は、GPT、PaLM、LLaMAなど、その驚異的な能力により、多くの関心を集めています。自然言語処理、生成、理解の力を活用してコンテンツの生成、質問への回答、テキストの要約などを行うことができるため、LLMは最近の話題となっています。 ただし、大モデルのトレーニングとメンテナンスの高い費用、特定の目的にカスタマイズする難しさは、彼らにとって課題となっています。OpenAIのChatGPTやGoogle Bardなどのモデルは、トレーニングデータの大量、莫大な記憶容量、複雑なディープラーニングフレームワーク、膨大な電力など、膨大なリソースを必要とします。 小型言語モデルとは何ですか? その代替として、小型言語モデル(SLM)が登場し、より強力かつ柔軟になってきました。小型言語モデルは、小型のニューラルネットワークサイズ、パラメータ数、トレーニングデータのボリュームを特徴としています。LLMよりもメモリと処理能力が少なくて済むため、オンプレミスおよびオンデバイスの展開に最適です。 SLMは、リソース制約がある状況で有用なオプションです。その『小さい』という用語は、モデルの効率性とアーキテクチャの両方に言及しています。軽量設計のおかげで、SLMはパフォーマンスとリソース使用量をバランスさせることで、さまざまなアプリケーションに柔軟な解決策を提供します。 小型言語モデルの重要性 効率的:トレーニングおよび展開の観点から見ると、SLMはLLMよりも効率的です。コンピューティングコストを削減したい企業は、よりパワフルな機器で作業することができ、トレーニングに必要なデータも少なくて済むため、多額の費用が節約できます。 透明性:洗練されたLLMと比較して、小型言語モデルは通常よりも透明で説明可能な動作を示します。透明性により、モデルの意思決定プロセスを理解し、監査することが容易になり、セキュリティ上の欠陥を見つけて修正することが容易になります。 正確性:小型言語モデルは、その小さなスケールのため、事実に基づいた正確な情報を提供し、偏見を表示しにくくなっています。特定のデータセットに対してターゲットトレーニングを行うことにより、異なる企業の基準に合致する正確な結果を一貫して生成することができます。 セキュリティ:セキュリティに関しては、小型言語モデルはより大型のモデルよりも優れた機能を持っています。SLMは、コードベースが小さく、パラメータ数が少ないため、悪意のある行為者に対する攻撃面の可能性が低くなります。トレーニングデータへの制御は、関連するデータセットを選択し、悪意のあるデータや偏ったデータに関連するリスクを減らすことで、セキュリティをさらに強化するのに役立ちます。 小型言語モデルの例 DistilBERTは、効率を損なうことなくパフォーマンスを保持するBERTのより速く、コンパクトなバージョンで、NLPを変革しています。 MicrosoftのOrca 2は、合成データを使用してMetaのLlama 2を洗練させ、特にゼロショットの推論タスクにおいて競争力のあるパフォーマンスレベルを達成しています。 Microsoft Phi 2は、適応性と効率を重視したトランスフォーマーベースの小型言語モデルであり、論理的推論、常識、数学的推論、言語理解などの能力を示します。 GoogleのBERTモデルの改良版(BERT Mini、Small、VoAGI、Tinyなど)は、さまざまなリソース制約に対応するために設計されています。これらのバージョンは、Mini(4.4万パラメータ)からVoAGI(4100万パラメータ)まで、さまざまなアプリケーションに柔軟性を提供します。 小型言語モデルの実践的な応用 顧客サービスの自動化:SLMは、俊敏性と効率性の向上のため、顧客サービスの自動化に最適です。マイクロモデルは、ルーチンの問題や顧客の問い合わせを効率的に処理することができ、人間のエージェントがより個別化された対応に集中できるようにします。 製品開発のサポート:エッジモデルは、アイデアの生成、機能のテスト、および顧客の需要予測に役立ち、製品開発に不可欠です。…
『Re Invent 2023の私のお勧め』
ここに私のお気に入りのリストがありますが、特定の順序はありません (Koko ni watashi no okiniiri no risuto ga arimasu ga, tokutei no junjo wa arimasen.)
このAIニュースレターはあなたが必要とするものです#76
今週、私たちはトランスフォーマーや大規模な言語モデル(LLM)の領域を超えた重要なAIの進展に焦点を当てました最近の新しいビデオ生成拡散ベースのモデルの勢いについて…
このQualcomm AI ResearchのAIペーパーは、EDGIを公開しました:先進的なモデルベースの強化学習と効率的な計画のための画期的な不変拡散器
あらゆるところに対称性があります。物理学の普遍的な原則は、空間と時間の両方において成り立ちます。空間座標が変換、回転、時間的にシフトされると、対称性が現れます。さらに、システムは、いくつかの似ているまたは同等のアイテムが番号でラベル付けされた場合、そのラベルの置換に関して対称です。具現化エージェントはこの構造に直面し、多くの日常的なロボット活動が時間的、空間的、または置換シンメトリーを示しています。四足歩行の動作は、運動の方向に依存しません。同様に、ロボットグリッパーはラベルに関係なく、複数の同一のアイテムと接触するかもしれません。ただし、この豊かな構造は、ほとんどの計画および強化学習(RL)アルゴリズムに考慮される必要があります。 十分なトレーニングを受けた後、明確に定義された問題に対して印象的な結果を示しているにもかかわらず、これらのアルゴリズムは頻繁にサンプリングの非効率性や環境変化への耐性の欠如を示します。研究チームは、RLアルゴリズムが対称性を理解していることでサンプル効率と耐性を向上させることが重要であると考えています。これらのアルゴリズムは、2つの重要な要件を満たす必要があります。まず、世界とポリシーモデルは関連する対称性グループについて同変である必要があります。これは、離散時間シフトZの部分群、空間対称性グループSE(3)の積集合グループ、および具現化エージェントの1つ以上の対象置換群Snです。第二に、実際の問題の解決のために、対称性グループの(一部の)緩やかな崩壊が可能であるべきです。ロボットグリッパーの目標は、空間の指定された位置にオブジェクトを移動することであり、これにより対称性グループSE(3)が崩壊します。同変RLの初期の試みは、この技術の潜在的な利点を明らかにしました。ただし、これらの作品は通常、Cnなどの小規模な有限対称群のみを考慮し、テスト中の仕事に応じてソフトな対称性の崩壊を許可することはありません。 この研究では、Qualcommの研究チームが、Equivariant Diffuser for Generating Interactions (EDGI) と呼ばれるモデルベースの強化学習および計画のための同変方法を提案しています。EDGIの基礎要素は、研究チームが具現化された文脈で遭遇することを予想している、SE(3) × Z × Snという完全な積集合群に関して同変です。さらに、EDGIはテスト時に柔軟なソフト対称性の崩壊を許可します。彼らの方法論は、以前に研究者から提案されたDiffuserメソッドに基づいており、ダイナミクスモデルの学習とその内部での計画の課題に対処しています。Diffuserの主な概念は、状態-行動の軌跡のオフラインデータセットで拡散モデルをトレーニングすることです。このモデルからの1つのサンプルは、現在の状態に条件付けられて計画されます。彼らの主な貢献は、多様な表現データを許容し、空間的、時間的、および置換対称性の積集合群SE(3) × Z × Snについて同変な拡散モデルを可能にすることです。 研究チームは、個々の対称性に作用する革新的な時間、オブジェクト、および置換レイヤー、および複数の入力表現を単一の内部表現に埋め込む革新的な方法を提案しています。クラス分類の案内と条件付けと組み合わせることで、計画アルゴリズムに含まれるテスト時のタスク要件によって対称性グループを柔軟に崩壊させることができます。研究チームは、ロボットのアイテムハンドリングと3Dナビゲーションの設定を使用して、EDGIの客観的な検証を示しています。研究チームは、訓練データが桁違いに少ない状況で、EDGIが低データドメインでの性能を著しく向上させ、最良の非同変ベースラインと同等のパフォーマンスを発揮することを発見しました。さらに、EDGIは以前に発見されていない配置にも効果的に適応し、環境の対称性変化に対して明らかに耐性があります。
クラウドソーシングされたフィードバックは、ロボットの訓練に役立ちます
「強化学習アプローチは、非専門家のユーザーからのクラウドソーシングされたフィードバックを使用してロボットをトレーニングします」
「デベロッパー用の15以上のAIツール(2023年12月)」
“`html GitHub Copilot GitHub Copilotは、市場をリードするAIによるコーディングアシスタントです。開発者が効率的に優れたコードを作成できるように設計され、CopilotはOpenAIのCodex言語モデルを基に動作します。このモデルは自然言語と公開コードの広範なデータベースの両方でトレーニングされており、洞察に満ちた提案を行うことができます。コードの行や関数を完全に補完するだけでなく、コメント作成やデバッグ、セキュリティチェックの支援など、開発者にとって大変貴重なツールとなっています。 Amazon CodeWhisperer AmazonのCodeWhispererは、Visual StudioやAWS Cloud9などのさまざまなIDEでリアルタイムのコーディング推奨事項を提供する、機械学習に基づくコード生成ツールです。大規模なオープンソースコードのデータセットでトレーニングされており、スニペットから完全な関数までを提案し、繰り返しのタスクを自動化し、コードの品質を向上させます。効率とセキュリティを求める開発者にとって大変便利です。 Notion AI Notionのワークスペース内で、AIアシスタントのNotionがさまざまな執筆関連のタスクをサポートします。創造性、改訂、要約などの作業を助け、メール、求人募集、ブログ投稿などの作成をスピードアップさせます。Notion AIは、ブログやリストからブレストセッションや創造的な執筆まで、幅広い執筆タスクの自動化に使用できるAIシステムです。NotionのAI生成コンテンツは、ドラッグアンドドロップのテキストエディタを使用して簡単に再構成や変換ができます。 Stepsize AI Stepsize AIは、チームの生産性を最適化するための協力ツールです。プロジェクトの履歴管理やタスク管理の役割を果たし、Slack、Jira、GitHubなどのプラットフォームと統合して更新を効率化し、コミュニケーションのミスを防ぎます。主な機能には、活動の統一した概要、質問への即時回答、堅牢なデータプライバシーコントロールが含まれます。 Mintlify Mintlifyは、お気に入りのコードエディタで直接コードのドキュメントを自動生成する時間の節約ツールです。Mintlify Writerをクリックするだけで、関数のための良く構造化された、コンテキストに即した説明を作成します。開発者やチームにとって理想的であり、複雑な関数の正確なドキュメントを生成することで効率と正確性が高く評価されています。 Pieces for Developers…
ニューヨーク大学とMetaの研究者が、「Dobb-E」という家庭用ロボット操作のためのオープンソースかつ汎用フレームワークを紹介した
NYUとMetaの研究者チームは、DobbEという高度に適応性のあるシステムを開発し、家庭環境におけるロボットの操作学習の課題に取り組みました。DobbEはユーザーのデモンストレーションから学習し、適応することができるシステムです。実験では、システムの効率性が示されましたが、現実の環境でのユニークな課題も浮き彫りにされました。 この研究は、ロボットのデータセットの大量収集に関する最近の進歩を認識し、家庭や第一者のロボットとの相互作用に焦点を当てたデータセットのユニークさを強調しています。iPhoneの機能を活用して、このデータセットは高品質のアクションとレアな深度情報を提供します。既存の自動操作に焦点を当てた表現モデルに比べ、汎用的な表現のためのドメイン内での事前学習が重視されています。さらなる改善のために、ロボット以外の家庭のビデオからのドメイン外情報をデータセットに追加することを提案し、その研究の可能性を認めています。 序文では、包括的な家庭用アシスタントの構築における課題に取り組み、制御された環境から実際の家庭への転換を主張しています。効率性、安全性、ユーザーの快適さが強調され、これらの原則を体現するフレームワークとしてDobbEが紹介されています。大規模なデータと最新の機械学習を利用した効率性、安全性のための人間のデモンストレーション、ユーザーの快適さのためのエルゴノミックなツールを組み合わせて、ハードウェア、モデル、アルゴリズムをHello Robot Stretchの周りに統合しています。ニューヨークの家庭データセット、22の家庭からの多様なデモンストレーション、ビジョンモデルのための自己教師あり学習手法も議論されています。 この研究では、行動複製フレームワークを用いてDobbEを訓練し、人間やエキスパートエージェントの振る舞いを模倣します。設計されたハードウェアセットアップにより、異なる家庭のデータ、iPhoneのオドメトリなどを活用してデモンストレーションの収集とロボットに転送がスムーズに行われます。基礎モデルはこのデータで事前学習されます。訓練されたモデルは実際の家庭でテストされ、視覚表現、必要なデモンストレーション、深度知覚、デモンストレータの専門知識、パラメトリックポリシーの必要性など、システムの異なるコンポーネントを評価するアブレーション実験が行われます。 DobbEは、5分のデモンストレーションと15分のHome Pretrained Representationsモデルの適応のみで、未知の家庭環境で81%の成功率を示しました。10の異なる家庭で30日間にわたって、DobbEは109のタスクのうち102を成功裏に学習し、ビジュアル表現にはResNetモデル、アクション予測には2層ニューラルネットワークなど、シンプルながらパワフルな方法の効果を証明しました。タスクの達成時間と難易度は回帰分析によって分析され、アブレーション実験ではグラフィカル表現やデモンストレータの専門知識など、異なるシステムコンポーネントが評価されました。 結論として、DobbEはさまざまな家庭環境でテストされた費用対効果の高い多目的なロボット操作システムで、驚異的な81%の成功率を示しました。DobbEチームは、システムのソフトウェアスタック、モデル、データ、ハードウェア設計を自由にオープンソース化し、家庭用ロボットの研究の推進とロボット執事の広範な普及を促進しています。DobbEの成功は、行動複製やアクション予測のための2層ニューラルネットワークなど、パワフルでシンプルな手法によるものです。実験はまた、照明条件や影がタスクの実行に影響を与える課題についての示唆も提供しました。
LangChainの発見:ドキュメントとのチャット、チャットボット翻訳、ウィキペディアとのチャット、合成データ生成
「ジェネラティブAIの世界の成長は、重要なPythonライブラリであるLangChainのおかげで可能になっています興味も最近の数ヶ月間で増しており、次のチャートで示されています」
「2024年に必ず試してみるべきトップ15のベクターデータベース」
イントロダクション 迅速に進化するデータサイエンスの風景において、ベクトルデータベースは高次元データの効率的な保存、検索、操作を可能にする重要な役割を果たしています。本稿では、ベクトルデータベースの定義と意義を探求し、従来のデータベースとの比較を行い、2024年に検討すべきトップ15のベクトルデータベースについて詳細な概要を提供します。 ベクトルデータベースとは何ですか? ベクトルデータベースは、本質的にはベクトル化されたデータを効率的に処理するために設計されています。伝統的なデータベースが構造化データの保存に優れているのに対し、ベクトルデータベースは多次元空間におけるデータポイントの管理に特化しており、人工知能、機械学習、および自然言語処理のアプリケーションに理想的です。 ベクトルデータベースの目的は、ベクトル埋め込み、類似検索、高次元データの効率的な処理を支援する能力にあります。伝統的なデータベースは非構造化データに苦労する場合があるのに対し、ベクトルデータベースはデータポイント間の関係性や類似性が重要なシナリオで優れたパフォーマンスを発揮します。 ベクトルデータベース vs 伝統的なデータベース 側面 伝統的なデータベース ベクトルデータベース データの種類 テーブル形式の単純なデータ(単語、数字)。 専用の検索を行う複雑なデータ(ベクトル)。 検索方法 正確なデータの一致。 近似最近傍探索(Approximate Nearest Neighbor、ANN)を使用した最も近い一致。 検索手法 標準的なクエリメソッド。 ハッシュやグラフベースの検索など、ANNに特化した手法。 非構造化データの処理 予め定義された形式の不足により困難。…
2024年のデータサイエンス向けトップ15のベクトルデータベース:包括的ガイド
導入 データサイエンスの急速に変化する風景において、ベクトルデータベースは高次元データの効率的なストレージ、検索、操作を可能にする重要な役割を果たしています。この記事では、ベクトルデータベースの定義と重要性を探り、従来のデータベースとの比較を行い、2024年に考慮すべきトップ15のベクトルデータベースの詳細な概要を提供します。 ベクトルデータベースとは何ですか? ベクトルデータベースは、本質的にはベクトル化されたデータを効率的に処理するよう設計されています。従来のデータベースが構造化データのストレージに優れているのに対し、ベクトルデータベースは多次元空間でデータポイントを管理することに特化しており、人工知能、機械学習、自然言語処理などのアプリケーションに理想的です。 ベクトルデータベースの目的は、ベクトル埋め込み、類似性検索、高次元データの効率的な処理を容易にする能力にあります。従来のデータベースが非構造化データに苦労するかもしれない状況において、ベクトルデータベースはデータポイント間の関係や類似性が重要なシナリオで優れた性能を発揮します。 プロジェクトに適したベクトルデータベースの選び方 プロジェクトに適したベクトルデータベースを選ぶ際には、以下の要素を考慮してください: データベースをホストするためのエンジニアリングチームはありますか?それとも完全に管理されたデータベースが必要ですか? ベクトル埋め込みを持っていますか?それともベクトルデータベースによる生成が必要ですか? バッチ処理やオンライン処理などのレイテンシー要件 チーム内の開発者の経験 与えられたツールの学習曲線 ソリューションの信頼性 実装とメンテナンスのコスト セキュリティとコンプライアンス 2024年のデータサイエンスにおけるトップ15のベクトルデータベース 1. Pinecone ウェブサイト:Pinecone オープンソース:いいえ GitHubスター数:836 問題解決: Pineconeはクラウドネイティブなベクトルデータベースで、シームレスなAPIと煩雑なインフラストラクチャを提供しています。ユーザーはインフラストラクチャを管理する必要がなく、AIソリューションの開発と拡大に集中することができます。Pineconeはデータの素早い処理に優れており、メタデータフィルターとスパース-デンスインデックスをサポートして正確な結果を提供します。 主な特徴:…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.