Learn more about Search Results こちらをご覧ください - Page 16

FastAPI、AWS Lambda、およびAWS CDKを使用して、大規模言語モデルのサーバーレスML推論エンドポイントを展開します

データサイエンティストにとって、機械学習(ML)モデルを概念実証から本番環境へ移行することは、しばしば大きな課題を提供します主な課題の一つは、良好なパフォーマンスを発揮するローカルトレーニング済みモデルをクラウドに展開して、他のアプリケーションで使用することですこのプロセスを管理することは手間がかかる場合がありますが、適切なツールを使用することで、...

将来のPythonバージョン(3.12など)に一般のユーザーに先駆けてアクセスする方法

Python 3.12などの将来のバージョンを群衆より先にインストールしてテストする方法についてのチュートリアルで、新しい機能を体験して競争上の優位性を獲得する方法

Google Cloudを使用してレコメンドシステムを構築する

Google CloudのRecommendation AIを使用して、高度な推薦システムを実装してください

PyTorchを使った転移学習の実践ガイド

この記事では、転移学習と呼ばれる技術を使用して、カスタム分類タスクに事前学習済みモデルを適応する方法を学びますPyTorchを使用した画像分類タスクで、Vgg16、ResNet50、およびResNet152の3つの事前学習済みモデルで転移学習を比較します

DeepMindのAIマスターゲーマー:2時間で26のゲームを学習

強化学習は、Google DeepMindの中核的な研究分野であり、AIを用いて実世界の問題を解決するための膨大な可能性を秘めています。しかし、そのトレーニングデータとコンピューティングパワーの非効率性は、重大な課題を引き起こしています。DeepMindは、MilaとUniversité de Montréalの研究者と協力して、これらの制限に対抗するAIエージェントを導入しました。このエージェントは、Bigger, Better, Faster(BBF)モデルとして知られており、わずか2時間で26のゲームを学習しながらAtariベンチマークで超人的なパフォーマンスを達成しました。この驚異的な成果は、効率的なAIトレーニング方法の新たな道を開き、RLアルゴリズムの将来的な進歩の可能性を解き放ちます。 詳細はこちらをご覧ください:DataHack Summit 2023のワークショップで、最新のAI技術を使用して強化学習の信じられないほどの可能性を解き放ち、実世界の課題に取り組んでください。 強化学習の効率課題 強化学習は、複雑なタスクに取り組むための有望なアプローチとして長年認識されてきました。しかし、従来のRLアルゴリズムは、実用的な実装を妨げる非効率性に苦しんでいます。これらのアルゴリズムは、大量のトレーニングデータと膨大なコンピューティングパワーを要求し、リソースを消費し、時間を要します。 また読む:強化学習の包括的なガイド Bigger, Better, Faster(BBF)モデル:人間を凌駕する DeepMindの最新のブレイクスルーは、Atariベンチマークでの卓越したパフォーマンスを発揮したBBFモデルから来ています。以前のRLエージェントはAtariゲームで人間を超えていましたが、BBFの特筆すべき点は、人間のテスターが利用可能な時間枠と同等の2時間のゲームプレイ内で、このような印象的な結果を達成したことです。 モデルフリー学習:新しいアプローチ BBFの成功は、ユニークなモデルフリー学習アプローチに帰することができます。ゲーム世界との相互作用を通じて受け取った報酬と罰に依存することにより、BBFは明示的なゲームモデルを構築する必要を回避します。この簡素化されたプロセスにより、エージェントは学習とパフォーマンスの最適化に集中し、より迅速かつ効率的なトレーニングが可能になります。 また読む:OpenAIとTensorFlowを使用した人間のフィードバックで強化学習を強化する トレーニング方法と計算効率の向上 BBFの急速な学習の成果は、いくつかの重要な要因によるものです。研究チームは、より大きなニューラルネットワークを採用し、自己モニタリングトレーニング方法を改良し、効率を向上させるための様々な技術を実装しました。特に、BBFは、以前のアプローチと比較して必要な計算リソースを減らすことができる、単一のNvidia A100 GPUでトレーニングすることができます。 進歩のベンチマーク:RLの進歩のための足がかり…

NVIDIA CEO:クリエイターは生成的AIによって「スーパーチャージ」されるでしょう

ジェンスン・ファウンダー兼CEOは、フランスのリビエラ地方で開催されたカンヌライオンズフェスティバルで、ジェンスン・ファウンダー兼CEOは、ジェンスン・ファウンダー兼CEOは、ジェンスン・ファウンダー兼CEOは、ジェンスン・ファウンダー兼CEOは、クリエイティブプロセスがコンテンツ生成において拡大され、コンテンツ生成はテキスト、画像、3D、ビデオであると述べました。 「クリエイティブプロセスがコンテンツ生成において拡大され、コンテンツ生成はテキスト、画像、3D、ビデオであると述べました。「コンテンツ生成を規模化することができますが、無限のコンテンツは無限の創造性を意味しない」と彼は言いました。「私たちの考えを通じて、このAIをあなたの価値観とブランドトーンに合わせたコンテンツを生成するように誘導する必要があります。」 このイベントには世界中のクリエイター、マーケター、ブランドエグゼクティブが参加し、Huang氏は、AIが7000億ドルのデジタル広告産業に与える影響について説明し、AIがクリエイターの能力を向上させる方法や、責任あるAI開発の重要性にも触れました。 これらのツールは、人間の創造性の代替ではなく、アーティストやマーケティング専門家のスキルを補完して、クライアントの需要に応えるために、より迅速にコンテンツを生成し、異なる観客に合わせた複数の形式で提供することができます。 ジェンスン・ファウンダー兼CEOは、「コンテンツ生成を民主化する」と述べています。 クリエイティブ産業にとって、生成AIの主な利点は、コンテンツ生成を拡大することができることです。これにより、広告、マーケティング、映画に使用されるテキストやビジュアルのオプションを迅速に生成することができます。 「過去には、媒体に基づいて数百種類の異なる広告オプションを作成していました。将来的には、回収するのではなく、数十億種類の異なる広告を生成することになります。しかし、それぞれが適切なトーンであり、ブランドにぴったりでなければなりません」とHuang氏は述べています。 プロのクリエイターが使用するためのこれらのAIツールは、従来の方法でキャプチャされたコンテンツの基準を満たすか、それを上回る高品質のビジュアルを生成する必要があります。 これらのツールは、アーティストやデザイナーが、AdobeやAutodeskなどの企業から提供される人気のあるツールで開発された資産を、生成AIを使用して開発された仮想世界と組み合わせることができるようにする、3Dの協業のためのUniversal Scene Descriptionフレームワークを参照し、資産とデザインを組み合わせることができます。 NVIDIA Picassoは、今年初めに発表されたカスタム生成AIモデルのファウンドリーであり、Adobe、Getty Images、Shutterstockなどのパートナーとの協力によって開発された、最高水準の画像、動画、3D生成AI能力もサポートしています。 黄さんは、「私たちは、パートナーが、例えばGetty、Shutterstock、Adobeから適切にライセンスされたデータからトレーニングできるプラットフォームを作成しました。彼らはコンテンツの所有者に敬意を払っています。トレーニングデータはそのソースから提供され、その経済的な利益はクリエイターに還元されることができます。」と述べました。 画期的な技術と同様に、AIの開発と展開は思慮深く行われることが重要だとRead氏とHuangさんは述べています。AIが生成した資産に透かしを入れる技術や、デジタル資産が改ざんされたかどうかを検出する技術は、これらの目標をサポートすることになります。 「私たちは、AIの能力と同じくらいAIの安全性にも同じくらいのエネルギーを注がなければなりません。」とHuangさんは言いました。「広告の世界では、安全性はブランドアライメント、ブランドの誠実さ、適切なトーン、真実です。」 デジタル広告のコンテンツエンジンに協力 Digital AdvertisingのリーダーであるWPPは、クリエイティビティとパーソナライゼーションを高めるツールとしてAIを受け入れ、業界全体のクリエイターが正しい消費者に向けた魅力的なメッセージを作成するのを支援しています。 Huangさんは、「クリエイティブプロセスから顧客まで、技術を理解する中間には必ず広告代理店が必要です。」と述べました。「その中間プロセスには、人間が必要です。あなたが代表するブランドの声を理解する必要があります。」 WPPのクリエイティブプロフェッショナルは、Omniverse Cloudを使用して、特定の製品デザインデータを使用して製品の物理的に正確なデジタルツインを作成できます。この実世界のデータは、AdobeやGetty Imagesなどのパートナーを通じてライセンスされたAI生成オブジェクトとデジタル環境と組み合わせることで、マーケティングコンテンツ用のバーチャルセットを作成することができます。…

Googleの安全なAIフレームワークを紹介します

今日、GoogleはSecure AI Frameworkをリリースし、協力してAI技術を安全に保護するのを支援します

人間の注意力を予測するモデルを通じて、心地よいユーザーエクスペリエンスを実現する

Google Researchのシニアリサーチサイエンティスト、Junfeng He氏とスタッフリサーチサイエンティスト、Kai Kohlhoff氏による記事です。 人間は、驚くほど多くの情報を取り入れる能力を持っています(網膜に入る情報は秒間約10 10ビット)。そして、タスクに関連し、興味深い領域に選択的に注目し、さらに処理する能力を持っています(例:記憶、理解、行動)。人間の注意(その結果として得られるものはしばしば注目モデルと呼ばれます)をモデル化することは、神経科学、心理学、人間コンピュータインタラクション(HCI)、コンピュータビジョンの分野で興味を持たれてきました。どの領域でも、どの領域でも、注目が集まる可能性が高い領域を予測する能力には、グラフィックス、写真、画像圧縮および処理、視覚品質の測定など、多数の重要な応用があります。 以前、機械学習とスマートフォンベースの注視推定を使用して、以前は1台あたり3万ドルにも及ぶ専門的なハードウェアが必要だった視線移動の研究を加速する可能性について説明しました。関連する研究には、「Look to Speak」というアクセシビリティニーズ(ALSのある人など)を持つユーザーが目でコミュニケーションするのを支援するものと、「Differentially private heatmaps」という、ユーザーのプライバシーを保護しながら注目のようなヒートマップを計算する技術が最近発表されました。 このブログでは、私たちはCVPR 2022からの1つの論文と、CVPR 2023での採用が決定したもう1つの論文、「Deep Saliency Prior for Reducing Visual Distraction」と「Learning from Unique Perspectives: User-aware…

魚の養殖スタートアップ、AIを投入して水産養殖をより効率的かつ持続可能にする

海洋生物学の学生だったJosef Melchnerは、イルカ、クジラ、魚を探すために毎日海をクルーズすることを常に夢見ていましたが、「実際的で、世界に利益をもたらすことができるものがしたかった」と述べています。キャリアを選ぶ時、彼は水産養殖に飛び込みました。 彼は現在、AIと機械学習を利用して魚の養殖をより効率的で持続可能なものにするイスラエルのGoSmartのCEOです。 NVIDIA MetropolisビジョンAIパートナーエコシステムと、最先端のスタートアップ向けのNVIDIA InceptionプログラムのメンバーであるGoSmartは、完全に自律的で省エネのシステムを提供しています。これらは、水産養殖のカゴ、池、またはタンクに取り付けることができる、ソーダボトル程度の大きさです。 エッジAIのためのNVIDIA Jetsonプラットフォームによって動力を供給され、これらのシステムは、環境内の魚の平均体重と人口分布、および温度と酸素レベルを分析します。 この情報は、GoSmartのソフトウェア・サービスを通じてユーザーに提供され、リアルタイムで魚の餌の量と収穫の最適なタイミングをより正確かつ効率的に決定するのに役立ちます。 「GoSmartシステムが分析するパラメータは、魚の餌の量の管理に不可欠です。適切な魚の餌の量の管理により、農家は多額のお金を節約し、水中の余分なデブリから有機物を減らすことができます。」とMelchner氏は述べています。 GoSmartシステムは、世界最大の魚の餌生産業者であるSkrettingによって採用され、南ヨーロッパの8か国で生産パイプラインを持続可能に拡大し、農家にパーソナライズされたデジタル化された情報を提供する取り組みの一環として使用されています。 持続可能なための精密農業 2020年に設立されたGoSmartは、環境保護に焦点を当てているため、魚の養殖に焦点を当てています。 「世界はタンパク質不足に直面していますが、海産タンパク質はしばしば漁船が漁網や長い針で獲得する方法で取得されます。一方、牛、豚、鶏などの代替タンパク質はほぼ常に養殖されますが、海産物の半分はまだ野生から取得されています。」とMelchner氏は述べています。 このような過剰漁獲は惑星に悪影響を及ぼします。 「これは私たち全員に影響を与える可能性のある重要な問題です。藻類は世界で最も大きな炭素の貯蔵庫の一つです。大気から炭素を消費し、酸素を放出しますが、過剰な漁獲は海洋の藻類のレベルに影響を与えます。」とMelchner氏は述べています。 これを理解することがMelchner氏を水産養殖に人生をささげるように導いたと彼は言います。 GoSmartシステムは、太陽光パネルで充電されたリチウムイオンバッテリーを使用し、自己の電源管理ソフトウェアが搭載されているため、自律的にスリープモードに入り、シャットダウン、起動し、必要に応じて作業を行うことができます。 AIによる農業の効率向上 GoSmartシステムは、AIをエッジで実行するために必要なセンサ、カメラ、およびNVIDIA Jetsonモジュールで構築されています。これにより、魚の餌や成長、健康、福祉に影響を与える環境要因、および効率的または正確でない操作による水中の過剰な有機物の環境汚染を分析することができます。 「私たちは、エッジAIで最高のパフォーマンスを発揮するAI用の最高のプロセッサを、水産養殖業者に手頃な価格で提供できるシステムであるコンパクトで水中に潜水可能なシステムに使用することを望んでいました。それがJetsonシリーズを選んだ理由です。」とMelchner氏は述べています。 GoSmartは現在、魚の行動や病気の指標を分析するシステムをトレーニングしています。Jetsonは複数のAIアルゴリズムを並列に実行できるため、これらの特性を同時にリアルタイムで分析できます。 同社は、高性能なディープラーニング推論には、NVIDIA…

NVIDIAとHexagonが、産業のデジタル化を加速するためのソリューションスイートを提供します

産業企業がデジタル化の次のレベルに到達するためには、物理システムの正確なバーチャルな表現を作成する必要があります。 NVIDIAは、ストックホルムに拠点を置くデジタルリアリティソリューションのグローバルリーダーであるHexagonと協力し、AI対応のデジタルツインを構築するために必要なツールとソリューションを企業に提供しています。これにより、物理的に正確で完全に同期されたデジタルツインを作成し、組織を変革することができます。 Hexagonは、HxDRリアリティキャプチャとNexus製造プラットフォームからNVIDIA Omniverseに統合を構築しています。Omniverseは、Universal Scene Description(「OpenUSD」)プラグインを介して産業メタバースアプリケーションを開発および運用するためのオープンプラットフォームです。NVIDIA AIテクノロジーによって駆動される接続されたプラットフォームは、農業、自律移動、建物、都市、防衛、インフラ、製造、鉱業を含むHexagonの主要なエコシステム全体に利益をもたらします。 これらのソリューションにより、統一されたビューを通じてシームレスなコラボレーションプランニングが実現し、産業顧客はワークフローを最適化し、スケールを拡大することができます。プロフェッショナルや開発者は、リアリティキャプチャ、デジタルツイン、AI、シミュレーション、可視化の高度な機能を利用して、仮想プロトタイピングからデジタル工場まで最も複雑なグラフィックスワークフローを強化することができます。 物理世界とデジタル世界を融合した現実 製造業は、新製品を設計・開発する数百万の工場を世界中に有している46兆ドルの産業です。デジタル化により、製造業者はより効率的かつ生産的な方法で最も複雑なエンジニアリング問題に取り組むことができます。また、産業企業はワークフローを自動化し、ソフトウェアによってサービスを変革することで、オペレーショナル効率を向上させ、ソフトウェア定義化に近づくことができます。 HxGN LIVE Globalイベントでは、HexagonとNVIDIAが統合提供を通じてデジタル化の旅を加速する方法を紹介しました。下のデモを見て、設計者、エンジニア、その他の人々がOmniverseプラットフォームを使用して、HexagonのHxDRおよびNexusプラットフォームから超複雑なデータを迅速に集約およびシミュレーションする方法をご覧ください。 Hexagonは、OmniverseをベースにしたAI対応のWebアプリケーションを開発しており、デジタルツインと物理世界のリアルタイム比較ができるようになります。これにより、意思決定を加速し、計画とオペレーションを最適化することができます。このソリューションにより、エンタープライズは、チーム全体で迅速な反復を実現し、より協力的なワークフローを実現することができます。 この発表により、Omniverseエコシステムは、Hexagonのジオスペーシャルリアリティキャプチャ、センサー、ソフトウェア、自律技術の専門知識を活用することができ、企業はこれまで以上に迅速かつ正確に仮想世界を構築、シミュレーション、運用、最適化することができます。 NVIDIA Omniverseについて詳しくはこちらをご覧ください。Hexagonの最新発表を読んで、HxGN LIVE Global 2023での最新のデモや展示を見てください。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us