Learn more about Search Results Introduction to Python - Page 15

テキストから画像への革命:SegmindのSD-1Bモデルが最速のゲームで登場

紹介 Segmind AIは、画期的なオープンソースのテキストから画像への生成モデルであるSSD-1B(Segmind Stable Diffusion 1B)を誇りに思って発表しました。この高速モデルは、前例のない速度、コンパクトなデザイン、高品質な視覚出力を実現しています。人工知能は、自然言語処理とコンピュータビジョンの分野で急速な進歩を示し、境界を再定義する革新を示しています。SSD 1Bモデルは、その主な特徴によりコンピュータビジョンへの扉を開きます。この包括的な記事では、モデルの特徴、使用例、アーキテクチャ、トレーニング情報などについて詳しく説明します。 学習目標 SSD-1Bのアーキテクチャの概要を探索し、専門モデルからの知識蒸留の活用方法を理解する。 SegmindプラットフォームでSSD-1Bモデルを活用して、高速な推論とコード推論を試して実践的な経験を得る。 後続の使用例について学び、SSD-1Bモデルが特定のタスクに使用できる方法を理解する。 特に絶対的な写真リアリズムの達成と特定のシナリオでのテキストの明瞭性を維持するためのSSD-1Bの限界を認識する。 この記事は、Data Science Blogathonの一環として公開されました。 モデルの説明 生成的な人工知能を使用する際の主な課題は、サイズと速度の問題です。テキストベースの言語モデルを扱うことは、モデル全体の重みを読み込む問題と推論時間の問題になりますが、安定な拡散を使った画像の場合はさらに困難になります。SSD-1Bは、高品質なテキストから画像への生成能力を維持しながら、SDXLの50%小さい蒸留版であり、60%の高速化が実現されています。GritとMidjourneyのスクレープデータを含むさまざまなデータセットでトレーニングされており、単語に基づいた視覚的な内容の作成に優れています。これは、専門モデル(SDXL、ZavyChromaXL、JuggernautXL)からの知識の戦略的な蒸留と豊富なデータセットでのトレーニングによって達成されました。この蒸留プロセスにより、SSD-1Bは様々なコマンドを処理する能力を備えています。 Segmind SD-1Bの主な特徴 テキストから画像の生成: テキストのプロンプトから画像を生成することに優れ、創造的なアプリケーションが可能です。 高速化のために蒸留: 効率化のために設計され、リアルタイムアプリケーションでの実用的な使用を60%高速化します。 多様なトレーニングデータ:…

「AutoGenを使った戦略的AIチームビルディングが簡単になりました」

イントロダクション デジタルフロンティアが無限の領域に達し、AutoGenは変革的なパラダイムの設計者として現れます。異なる領域でスキルを持つ個々のパーソナルAIチームがシームレスに協力し、円滑にコミュニケーションし、複雑なタスクに取り組み続けることを想像してみてください。それがAutoGenの本質であり、パーソナルAIチームの構築を可能にする先駆的なマルチエージェント対話フレームワークです。本記事では、AutoGenの魔法を解き明かし、独自のデジタルドリームチームを組み立て、非凡な成果を達成する方法を探ります。人間と機械の境界が薄れ、協力が無限になる未来へようこそ。 学習目標 詳細に入る前に、この記事の主な学習目標を概説しましょう。 マルチエージェント対話フレームワークとしてのAutoGenについて包括的な理解を得る。 エージェントがマルチエージェント対話フレームワークで自律的にコミュニケーションし、協力する方法を学ぶ。 AutoGenの動作におけるconfig_listの重要な役割について学ぶ。APIキーの保護とエージェントの効率的なパフォーマンスのための設定の管理に関するベストプラクティスを理解する。 AutoGenがサポートする完全自律から人間が関与する対話までのさまざまな対話スタイルを探索する。AutoGenがサポートする静的および動的な対話パターンについて学ぶ。 検証データ、評価関数、最適化メトリクスに基づいてLLMを調整するためにAutoGenを利用する方法を発見する。 コラボレーションコンテンツ作成チームや文化的な文脈での言語翻訳などの例を探索し、AutoGenがさまざまなシナリオでどのように適用されるかを理解する。 この記事はData Science Blogathonの一部として公開されました。 AutoGenとは何ですか? AutoGenは、基盤モデルの使用のための高度な抽象化として機能する統合マルチエージェント対話フレームワークです。それは、能力のあるカスタマイズ可能なエージェントをLLM、ツール、および人間の参加者が自動化チャット経由で統合することにより、エージェントが自律的にコミュニケーションし、協力して作業することを可能にします。基本的には、複雑なタスクを効率的に進め、ワークフローを自動化することができます。 なぜAutoGenが重要ですか? AutoGenは、効率的かつ柔軟なマルチエージェント通信の需要に応えます。その重要性は次の点にあります: 複雑なLLMワークフローのオーケストレーション、自動化、最適化を簡素化する。 LLMモデルのパフォーマンスを最大化すると同時に、制限を克服する。 次世代のLLMアプリケーションを少ない努力でマルチエージェント対話に基づいて開発することを可能にする。 開発環境のセットアップ 仮想環境の作成 仮想環境はプロジェクト固有の依存関係を分離し、システム全体のパッケージとの競合を避けるための良い習慣です。Python環境を設定する方法は次のとおりです: オプション1:Venv…

「Rustベースのベクトルデータベース、Qdrantに深く潜る」

イントロダクション ベクトルデータベースは、非構造化および構造化データの表現を格納および索引化するための主要な場所となっています。これらの表現は、埋め込みモデルによって生成されるベクトル埋め込みです。ベクトルストアは、ディープラーニングモデル、特に大規模な言語モデルを使用したアプリの開発で重要な役割を果たしています。ベクトルストアの領域は常に進化しており、最近導入されたQdrantはその1つで、機能が充実しています。さあ、それについてもっと詳しく見ていきましょう。 学習目標 Qdrantの専門用語に慣れることで、より理解を深める Qdrant Cloudにダイブし、クラスタを作成する ドキュメントの埋め込みを作成し、Qdrantコレクションに保存する方法を学ぶ Qdrantでクエリがどのように機能するかを探る Qdrantのフィルタリングを弄って、その動作を確認する この記事はData Science Blogathonの一環として公開されました。 埋め込みとは何ですか? ベクトル埋め込みは、データを数値形式で表現する手段です。つまり、テキスト、写真、音声、ビデオなどのデータの種類に関係なく、n次元空間または数値ベクトルとして表します。埋め込みを使用すると、関連するデータをグループ化することができます。特定の入力は、特定のモデルを使用してベクトルに変換することができます。Googleによって作成された有名な埋め込みモデルであるWord2Vecは、単語をベクトル(ベクトルはn次元の点です)に変換します。各大規模言語モデルには、LLMの埋め込みを生成する埋め込みモデルがあります。 埋め込みは何に使用されますか? 単語をベクトルに変換する利点の1つは、比較が可能であるということです。数値入力またはベクトル埋め込みとして2つの単語が与えられた場合、コンピュータはそれらを直接比較することはできませんが、それらを比較することができます。類似した埋め込みを持つ単語をグループ化することが可能です。王、女王、王子、王女といった用語は、関連するクラスタに表示されます。 この意味で、埋め込みは、与えられた用語に関連する単語を特定するのに役立ちます。これは、文に使用され、入力された文に関連する文を返すデータが提供される場合に使用されます。これは、チャットボット、文の類似度、異常検知、セマンティックサーチなどの多くのユースケースの基礎となります。私たちが提供するPDFまたはドキュメントに基づいて質問に答えるために開発するチャットボットは、この埋め込みの概念を利用しています。これは、すべての生成的大規模言語モデルが、それらに供給されるクエリに同様に関連付けられたコンテンツを取得するために使用する方法です。 ベクトルデータベースとは何ですか? 先述のように、埋め込みは、通常非構造化データの場合に数字形式で表される、あらゆる種類のデータの表現です。それでは、それらをどこに保存するのでしょうか?伝統的なRDBMS(リレーショナルデータベース管理システム)では、これらのベクトル埋め込みを保存することはできません。これがベクトルストア/ベクトルデータベースの登場する場所です。ベクトルデータベースは、効率的な方法でベクトル埋め込みを保存および取得するために設計されています。埋め込みモデルのサポートや似たようなベクトルを取得するために使用する検索アルゴリズムの種類によって異なる多くのベクトルストアが存在します。 Qdrantとは何ですか? Qdrantは、新しいベクトル類似度検索エンジンおよびベクトルデータベースであり、安全性で知られるRust言語で構築された本番向けのサービスを提供しています。 Qdrantは、メタデータであるペイロードが付加された高次元ポイント(ポイントはベクトル埋め込みのこと)を保存、検索、管理するために設計されたユーザーフレンドリーなAPIを備えています。これらのペイロードは有用な情報となり、検索の精度向上およびユーザーへの洞察を提供します。Chromaなど他のベクトルデータベースに精通している方であれば、ペイロードはメタデータに似ており、ベクトルに関する情報を含んでいます。 Rustで書かれていることにより、Qdrantは高負荷下でも高速で信頼性のあるベクトルストアとなっています。他のデータベースとの違いは、Qdrantが提供するクライアントAPIの数です。現在、QdrantはPython、TypeScript/JavaScript、Rust、およびGoをサポートしています。QdrantはベクトルインデックスにHSNW(階層ナビゲーション小世界グラフ)を使用しており、コサイン、ドット、ユークリッドなどの多くの距離尺度を備えています。また、ボックスから推奨APIも利用できます。 Qdrantの用語を知る…

「教師なし学習シリーズ ― DBScanの探索」

クラスタリングアルゴリズムはデータサイエンスの世界で最も広く使用される解決策の一つであり、最も人気のあるものは距離に基づくアプローチと密度に基づくアプローチにグループ化されますしかし、しばしば...

ギットハブアクションズでのキャッシュ保存

この記事では、Github Actionsのキャッシュ方法について紹介しますGithub Actionsは、ワークフローを自動化するためのGithubのプラットフォームであり、CI/CD(継続的インテグレーション/...)によく使われています

基本に戻る週3:機械学習の紹介

「VoAGIのバック・トゥ・ベーシックスシリーズの第3週へようこそ今週は、機械学習の世界にダイブしていきます」

「ChatGPT AI-1の解放:高度なLLMベースのシステムの構築」

導入 この記事では、チャットGPT AI-1を使ったLLM(大規模言語モデル)に基づくシステムの構築について説明します。読者がプロンプトエンジニアリングの基礎について理解していることを前提としています。概念を理解するためには、以下を参照してください:https://www.analyticsvidhya.com/blog/2023/08/prompt-engineering-in-generative-ai/ この記事はステップバイステップのアプローチで行われます。トピックの大きさを考慮して、記事を3つのパートに分けています。これはそのうちの最初のパートです。システムには単一のプロンプトだけでは十分ではなく、LLMベースのシステムの開発部分に詳しく取り組みます。 学習目標 LLMベースのシステム構築の始め方を学ぶ。 LLMの動作原理を理解する。 トークンとチャットフォーマットの概念を理解する。 分類、モデレーション、思考の連鎖推論を適用してシステムを構築する。 この記事はデータサイエンスブログマラソンの一環として公開されました。 LLMの動作メカニズム テキスト生成プロセスでは、プロンプトが与えられ、LLMに対してそのプロンプトを完成させるものを埋めるように求められます。 例: 数学は_______です。LLMは「興味深い科目、すべての科学の母など」と埋めることができます。 大規模言語モデルは、教師付き学習によってこれらすべてを学習します。教師付き学習では、モデルは入力と出力の関係をラベル付きのトレーニングデータを通じて学習します。X-Yマッピングにも同じプロセスが使用されます。 例: ホテルのフィードバックの分類。部屋が素晴らしかったという口コミは肯定的な感情のレビューとしてラベル付けされ、一方で「サービスが遅い」という口コミは否定的な感情としてラベル付けされます。 教師付き学習では、ラベル付けされたデータを取得し、それらのデータを使ってAIモデルをトレーニングします。トレーニング後はデプロイされ、最終的にモデルが呼び出されます。今度は美しい場所のような新しいホテルのレビューを与えて、結果が肯定的な感情であることを期待します。大規模言語モデルには基本的なLLMと指示に調整されたLLMの2つの主要なタイプが存在します。これらの概念を理解するために、以下のリンク先の記事を参照してください。 基本的なLLMを変換するプロセスとは? 基本的なLLMを指示に調整されたLLMに変換するプロセスは以下の通りです:1. 基本的なLLMは大量のデータ(数百億の単語)でトレーニングする必要があります。このプロセスは広範なスーパーコンピューターシステムで数か月かかることがあります。2. モデルは、小規模な例のセットに対してファインチューニングを行うことでさらにトレーニングされます。3. 出力の品質に対するさまざまなLLMの評価(出力が役に立つかどうか、正直かどうか、無害かどうかなどの基準)を人間から得るためのツールとして、RLHF(Reinforcement Learning…

エクスラマV2:LLMを実行するための最速のライブラリ

ExLlamaV2は、GPTQからさらに高いパフォーマンスを引き出すために設計されたライブラリです新しいカーネルのおかげで、(超高速の)速い推論に最適化されています

算術推論問題のための即座のエンジニアリング

大規模言語モデル(LLM)は、言語の理解と生成の能力において、学術研究者と業界の専門家の両方からますます注目を集めていますその理由は…

MicrosoftエンジニアのAIイノベーションとリーダーシップへのガイド

「マイクロソフトのシニアソフトウェアエンジニア、マナス・ジョシとともにAIイノベーションの洞察に飛び込もう:次世代のための技術、成功、教えの旅」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us