Learn more about Search Results Clean Code - Page 15

「AWS 上の生成型 AI を使用して、放射線学のレポートの所見から自動的に印象を生成します」

この投稿では、AWSサービスを使用して、公開されているLLMsを放射線学報告の要約のために微調整する戦略を示していますLLMsは、自然言語の理解と生成において卓越した能力を示しており、さまざまなドメインやタスクに適応できる基礎モデルとして機能します事前学習済みモデルを使用することには、重要な利点があります計算コストを削減し、炭素フットプリントを削減し、ゼロからモデルをトレーニングする必要がなく、最先端のモデルを使用できます

素晴らしい応用(データ)科学の仕事

データサイエンスを素晴らしくするメタスキル:ビジネス要件から結果の説得力のあるプレゼンテーションまで、問題を終始解決するのに役立つもの

あなたのGen AIプロジェクトで活用するための10のヒントとトリック

現在、実際に利用されている生成型AIアプリケーションはあまり多くはありませんここで言っているのは、それらがエンドユーザーによって展開され、活発に使用されていることを意味します(デモ、POC、および抽出型AIは含まれません)生成型AIは…

「Amazon SageMakerを使用したフェデレーテッドラーニングによる分散トレーニングデータを用いた機械学習」

この投稿では、分散トレーニングデータを使用してAmazon SageMakerでフェデレーテッドラーニングを実装する方法について説明します

「Amazon SageMaker Data WranglerでAWS Lake Formationを使用して細粒度のデータアクセス制御を適用する」

「SageMaker Data Wranglerは、Amazon EMRと組み合わせてLake Formationを利用できるようになり、この細かいデータアクセス制限を提供することをお知らせできることを嬉しく思います」

『Amazon SageMaker Clarifyを使用して、臨床設定で医療上の決定を説明する』

この投稿では、Amazon SageMaker Clarifyを使用して、臨床設定でモデルの説明可能性を向上させる方法を示します医療領域で使用される機械学習(ML)モデルの説明可能性は、採用を得るためにさまざまな観点から説明する必要がありますこれらの観点には、医学的、技術的、法的な観点、そして最も重要な観点である患者の観点が含まれます医療領域のテキストで開発されたモデルは統計的に正確になっていますが、個々の患者に最適なケアを提供するために、臨床医はこれらの予測に関連する弱点を倫理的に評価する必要があります臨床医が患者ごとに正しい選択をするためには、これらの予測の説明可能性が必要です

Pythonによる地理空間データの分析

地理空間データサイエンスは私の興味の一つですデータを地図上で可視化し、そしてどれだけ多くの場合にデータポイント間の関係が素晴らしいものであるかについて、私は魅了されています…

「コンテキストの解読:NLPにおける単語ベクトル化技術」

「あなたは自国から遠く離れた新しい町に引っ越しましたそこで偶然、コーヒーショップで誰かにぶつかりましたあなたと同じくらいの年の若い女性で、すぐに二人は会話に夢中になりましたそれは…」

「非構造化データ内のデータスライスの検出」 翻訳結果は以下の通りです: 「非構造化データ内でデータスライスを見つける」

データスライスは、モデルが異常な動作をするデータの意味のあるサブセットです非構造化データの問題(例:画像、テキスト)に取り組む際に、これらのスライスを見つけることは...

「LangChainとGPT-4を使用した多言語対応のFEMAディザスターボットの研究」

この記事では、洪水や竜巻などの災害に備え、生き残るために、多言語対応のアメリカ連邦緊急事態管理庁(FEMA)の災害チャットボットを作成する方法について探求します

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us