Learn more about Search Results A - Page 15
- You may be interested
- 🤗 Transformersでn-gramを使ってWav2Vec2...
- 合成データプラットフォーム:構造化デー...
- 二党間の法案が提出され、AIのリスクや規...
- Amazon SageMaker Ground Truthのはじめ方
- VQ-Diffusion
- 新しいOpenAIのGPTsサービスが小規模ビジ...
- 「ConDistFLとの出会い:CTデータセットに...
- 「給与システムでの人事管理の活用方法:4...
- 「仕事の未来を形作る:メタのアーピット...
- 「Amazon SageMakerスマートシフティング...
- 統計的推定と推論の初心者向け解説
- 「新しいAmazon Kendra Alfrescoコネクタ...
- オーストラリアのチームが、人工知能と人...
- Transcript AIコンテンツの生成を検出する
- 『検索増強生成(RAG)の評価に向けた3ス...
「なぜマイクロソフトのOrca-2 AIモデルは持続可能なAIにおいて重要な進展を示すのか?」
「マイクロソフトのOrca-2が持続可能なAIへの画期的な進歩を遂げていることを発見してください大規模な言語モデル(LLM)のエネルギー消費が激しい性質から解放されたOrca-2は、サイズよりも知的なデザインを重視することで既成概念に挑戦しますこの転換が、高度なAIを包括的で、環境負荷の少ない、影響力のあるものにする新たな可能性を示していることを学んでくださいOrca-2の意義を探り、技術の進歩と環境責任への取り組みを調和させる持続可能なAIの未来の形成における役割を探ってください」
ミストラルAIは、パワフルなスパースな専門家の
人工知能の進展に向けて、革新的なオープンモデルを提供するパイオニアであるMistral AIが、Mixtral 8x7Bを発表しました。この高品質のスパースなエキスパート混合(SMoE)モデルは、オープンウェイトを備え、この分野での重要な飛躍を示しています。伝統的なアーキテクチャやトレーニングパラダイムを逸脱し、Mistral AIは開発者コミュニティに独自のモデルを提供することで、イノベーションと多様なアプリケーションを促進することを目指しています。 Mixtral 8x7Bの概要 Mixtral 8x7Bは、デコーダーのみのモデルであり、スパースなエキスパート混合ネットワークを活用しています。8つの異なるパラメータグループを持ち、フィードフォワードブロックは各層で2つのエキスパートを動的に選択してトークンを処理し、それらの出力を加算的に組み合わせます。この革新的なアプローチにより、モデルのパラメータ数が46.7Bに増加し、コストとレイテンシの制御を維持しながら、12.9Bモデルの速度とコスト効率で動作します。 スパースアーキテクチャによるフロンティアの拡大 Mistral AIは、Mixtralによるスパースアーキテクチャの使用を先駆けており、オープンモデルの限界を押し広げることへの取り組みを示しています。Mixtral内のルーターネットワークは、入力データを効率的に処理し、トークンごとに特定のパラメータグループを選択します。このパラメータの戦略的な利用は、スピードやコストを損なうことなく、性能を向上させます。これにより、MixtralはAIの領域で強力な競合相手となります。 パフォーマンスメトリクス Mixtralは、Llama 2モデルおよびGPT3.5ベースモデルと比較してテストされています。結果は、Mixtralの実力を示し、Llama 2 70Bを上回り、さまざまなベンチマークでGPT3.5と同等以上の性能を発揮しています。品質対推論予算のトレードオフグラフは、Mixtral 8x7Bの効率性を示しており、Llama 2と比較して非常に効率的なモデルの一部となっています。 幻想、バイアス、言語の習得 Mixtralのパフォーマンスの詳細な分析により、TruthfulQA、BBQ、およびBOLDのベンチマークにおけるその強みが明らかになります。Llama 2と比較して、Mixtralは真実性の向上とバイアスの削減を示しています。このモデルは、フランス語、ドイツ語、スペイン語、イタリア語、英語など、複数の言語に精通しています。 また、読んでみてください:GPTからMistral-7Bへ:AI会話のエキサイティングな飛躍 私たちの意見 Mistral…
「Pythonクライアントを使用してMyScaleを始める」
「マイスケールの基本から、テーブルの作成やインデックスの定義などを学び、上級のSQLベクトル検索までを探求してくださいなぜマイスケールを選ぶべきかも知ることができます」
「研究データ管理の変革:AIの役割によるデベロッパーのエンパワーメント」
「人工知能(AI)は、開発者にとって便利な友達のような存在ですAIは大量のデータの中から情報を見つけることを簡単にします」
「エッセンシャルAI、シリーズAラウンドで5650万ドル調達」
スタートアップ企業のEssential AIは、56.5百万ドルのシリーズAを調達し、エンタープライズブレインの構築を目指していますGoogleのベテランであるAshish VaswaniとNiki Parmarによって設立されたこのスタートアップは、人間と機械の間に架け橋を築くことを約束するAI製品のフルスタックに取り組んでいますYahoo!によると...
「EUの新しいAI法案の主なポイント、初の重要なAI規制」
「欧州連合による人工知能の規制イニシアチブは、テクノロジーの法的・倫理的なガバナンスにおいて重要な時点を迎えています最近のAI法案により、EUはAIシステムによって生じる複雑さや課題に対処するため、主要な世界的な組織の中で最初の一歩を踏み出しましたこの法案は、単なる立法上のマイルストーンではありません[...]」
『UC BerkeleyがAIフィードバックから強化学習を使って訓練されたオープンなLLMを発表』
新しいレポートでは、UCバークレーの研究者がReinforcement Learning from AI Feedback(RLAIF)を使って作成された革命的な大規模言語モデルであるStarling-7Bを紹介しています研究者たちは、このモデルが最先端の技術と手法を取り入れ、自然言語処理の領域を再定義する助けになることを期待しています研究者たちは、...
ギガGPTに会ってください:CerebrasのnanoGPTの実装、Andrei Karpathyの効率的なコードでGPT-3のサイズのAIモデルを訓練するためにわずか565行のコード
大規模なトランスフォーマーモデルのトレーニングには、特に数十億または数兆のパラメータを持つモデルを目指す場合、重要な課題があります。主な難関は、複数のGPUに効率的にワークロードを分散させながらメモリ制限を緩和することにあります。現在の状況では、Megatron、DeepSpeed、NeoX、Fairscale、Mosaic Foundryなど、複雑な大規模言語モデル(LLM)スケーリングフレームワークに依存しています。ただし、これらのフレームワークは、モデルのサイズが大きくなるにつれてかなりの複雑さを導入します。今回の研究では、CerebrasのgigaGPTを、この課題に対する画期的な解決策として紹介します。これにより、複雑な並列化技術の必要性を排除した代替手法を提供します。 大規模なトランスフォーマーモデルのトレーニングには、MegatronやDeepSpeedなどのフレームワークのように、複数のGPU上での分散コンピューティングに依存している方法が主流です。ただし、数十億のパラメータを超えるモデルの場合、これらの方法ではメモリ制約に遭遇し、複雑な解決策が必要です。これに対して、CerebrasのgigaGPTはパラダイムシフトをもたらします。565行という非常にコンパクトなコードベースを備えたnanoGPTを実装しています。この実装は、追加のコードやサードパーティのフレームワークに依存することなく、1000億を超えるパラメータを持つモデルをトレーニングできます。gigaGPTはCerebrasのハードウェアの広範なメモリと計算能力を活用します。他のフレームワークとは異なり、余分な複雑さを導入せずにシームレスに動作し、簡潔で独自のコードベースとGPT-3のサイズのモデルのトレーニング能力を提供します。 gigaGPTは、基本的なGPT-2のアーキテクチャを実装しており、nanoGPTの原則に密接に沿っています。学習された位置の埋め込み、標準のアテンション、モデル全体にわたるバイアス、およびnanoGPTの構造に対する選択肢を採用しています。特筆すべきは、この実装が特定のモデルサイズに限定されないことです。gigaGPTは111M、13B、70B、および175Bパラメータを持つモデルのトレーニングでその柔軟性を検証しています。 OpenWebTextデータセットとnanoGPTのGPT-2トークナイザーと前処理コードを使用してテストを行います。gigaGPTのパフォーマンスは、専用の並列化技術を必要とせずに数百億のパラメータから数千億のパラメータまでスケーリングする能力によって強調されています。565行のコードがリポジトリ全体をカバーしており、その簡単な構造と効率性を示しています。 実装の成功は、特定のモデル構成でもさらに示されます。たとえば、111M構成はCerebras-GPTと一致し、モデルの次元、学習率、バッチサイズ、トレーニングスケジュールが同じです。同様に、13B構成もサイズにおいて対応するCerebras-GPT構成に近く、70B構成はLlama-2 70Bからインスピレーションを受けています。70Bモデルは安定性とパフォーマンスを維持し、スケーラビリティを示しています。70Bモデルを検証した後、研究者たちはGPT-3の論文に基づいて175Bモデルを構成することで境界を em emました。初期の結果は、メモリの問題なく拡大スケールを処理できるモデルの能力を示しており、gigaGPTは1兆を超えるパラメータを持つモデルにもスケーリングできる可能性を示唆しています。 結論として、gigaGPTは大規模なトランスフォーマーモデルのトレーニングの課題に対する画期的な解決策として浮かび上がっています。研究チームの実装は、簡潔で使いやすいコードベースを提供するだけでなく、GPT-3のサイズのモデルのトレーニングも可能にします。Cerebrasのハードウェアを利用した、広範なメモリと計算能力による利点は、大規模なAIモデルのトレーニングをよりアクセス可能、スケーラブル、効率的にする大きな進歩です。この革新的なアプローチは、巨大な言語モデルのトレーニングの複雑さに取り組もうとする機械学習の研究者や実践者にとって有望な道を開くものと言えます。 Introducing gigaGPT: our implementation of @karpathy’s nanoGPT that trains GPT-3 sized models in just…
KubernetesでのGenAIアプリケーションの展開:ステップバイステップガイド
このガイドは、高い可用性のためにKubernetes上でGenAIアプリケーションを展開するための包括的で詳細な手順を提供します
アリゾナ州立大学のこのAI研究は、テキストから画像への非拡散先行法を改善するための画期的な対照的学習戦略「ECLIPSE」を明らかにした
拡散モデルは、テキストの提案を受け取ると、高品質な写真を生成するのに非常に成功しています。このテキストから画像へのパラダイム(T2I)の生成は、深度駆動の画像生成や主題/セグメンテーション識別など、さまざまな下流アプリケーションで成功裏に使用されています。2つの人気のあるテキスト条件付き拡散モデル、CLIPモデルと潜在的な拡散モデル(LDM)のような、しばしば安定拡散と呼ばれるモデルは、これらの進展に不可欠です。LDMは、オープンソースソフトウェアとして自由に利用可能なことで研究界で知られています。一方、unCLIPモデルにはあまり注目が集まっていません。両モデルの基本的な目標は、テキストの手がかりに応じて拡散モデルをトレーニングすることです。 テキストから画像への優位性と拡散画像デコーダを持つunCLIPモデルとは異なり、LDMには単一のテキストから画像への拡散モデルがあります。両モデルファミリーは、画像のベクトル量子化潜在空間内で動作します。unCLIPモデルは、T2I-CompBenchやHRS-Benchmarkなどのいくつかの構成ベンチマークで他のSOTAモデルを上回ることが多いため、この記事ではそれに集中します。これらのT2Iモデルは通常多くのパラメータを持つため、トレーニングには優れた画像とテキストのペアリングが必要です。LDMと比較すると、DALL-E-2、Karlo、KandinskyなどのunCLIPモデルは、約10億のパラメータを持つ前のモジュールがあるため、合計モデルサイズが大幅に大きくなります(≥ 2B)。 そのため、これらのunCLIPモデルのトレーニングデータは250M、115M、177Mの画像テキストのペアリングです。したがって、2つの重要な質問が残ります:1)テキスト構成のSOTAパフォーマンスは、テキストから画像への先行モデルを使用することで改善されるのでしょうか?2)それともモデルのサイズを増やすことが重要な要素なのでしょうか?パラメータとデータの効率性を向上させることで、研究チームはT2I先行モデルについての知識を向上させ、現在の形式に比べて重要な改善を提供することを目指しています。T2I先行モデルは、拡散プロセスの各タイムステップでノイズのない画像埋め込みを直接推定するための拡散モデルでもあり、これは以前の研究が示唆しているようです。研究チームは、この前期の普及プロセスを調査しました。 図1は、SOTAテキストから画像へのモデル間の3つの構成タスク(色、形、テクスチャ)の平均パフォーマンスとパラメータの総数を比較しています。ECLIPSEは少量のトレーニングデータしか必要とせず、少ないパラメータでより優れた結果を出します。提示されたECLIPSEは、Kandinskyデコーダを使用して、わずか5百万の画像テキストペアリングのみを利用して約3300万のパラメータでT2I先行モデルをトレーニングします。 研究チームは、拡散プロセスがわずかにパフォーマンスを低下させ、正しい画像の生成には影響を与えないことを発見しました。さらに、拡散モデルは収束が遅いため、トレーニングには大量のGPU時間または日数が必要です。そのため、非拡散モデルはこの研究では代替手段として機能します。分類子のガイダンスがないため、この手法は構成の可能性を制限するかもしれませんが、パラメータの効率性を大幅に向上させ、データの依存性を軽減します。 本研究では、Arizona State Universityの研究チームは、上記の制約を克服し、T2Iの非拡散先行モデルを強化するためのユニークな対照的学習技術であるECLIPSEを紹介しています。研究チームは、提供されたテキスト埋め込みから画像埋め込みを生成する従来のアプローチを最適化することにより、Evidence Lower Bound(ELBO)を最大化しました。研究チームは、事前学習されたビジョン言語モデルの意味的整合性(テキストと画像の間)機能を使用して、以前のトレーニングを監視しました。研究チームは、ECLIPSEを使用して、画像テキストのペアリングのわずかな断片(0.34%〜8.69%)を使用して、コンパクトな(97%小さい)非拡散先行モデル(3300万のパラメータを持つ)をトレーニングしました。研究チームは、ECLIPSEトレーニングされた先行モデルをunCLIP拡散画像デコーダバリエーション(KarloとKandinsky)に導入しました。ECLIPSEトレーニングされた先行モデルは、10億のパラメータを持つバージョンを上回り、ベースラインの先行学習アルゴリズムを上回ります。研究結果は、パラメータやデータを必要とせずに構成を改善するT2I生成モデルへの可能な道を示唆しています。 図1に示すように、彼らの総合パラメータとデータの必要性は大幅に減少し、T2Iの増加により類似のパラメータモデルに対してSOTAのパフォーマンスを達成します。貢献。1)unCLIPフレームワークでは、研究チームがテキストから画像への事前の対照的な学習に初めてECLIPSEを提供しています。 2)研究チームは包括的な実験を通じて、資源制約のある文脈でのECLIPSEの基準事前に対する優位性を証明しました。 3)注目すべきは、ECLIPSE事前のパフォーマンスを大きなモデルと同等にするために、トレーニングデータのわずか2.8%とモデルパラメータのわずか3.3%しか必要としないことです。 4)また、研究チームは現在のT2I拡散事前の欠点を検討し、経験的な観察結果を提供しています。
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.