Learn more about Search Results 結論 - Page 15
- You may be interested
- Salesforce AIは、既存の拡散モデルを与え...
- Pythonによる(Bio)イメージ分析:ヒストグ...
- 『Photoshopを越えて:Inst-Inpaintが拡散...
- T5:テキスト対テキスト変換器(パート1)
- 50以上の最新の最先端AIツール(2023年7月)
- このAIの論文は、FELM:大規模な言語モデ...
- 「2023年に学ぶべきデータサイエンスのた...
- ML MonorepoのPantsでの組織化
- 「生成AIが製品開発チームに与える影響」
- 「ロボットがより良い判断をするにはどう...
- 「バリー・ディラー対生成AI:著作権法的...
- USCの研究者は、新しい共有知識生涯学習(...
- ボーダフォンは、AWS DeepRacerとアクセン...
- 衝撃的な現実:ChatGPTのデータ漏洩への脆...
- 「パクストンAIの共同創業者兼CEO、タング...
「なぜ機械は思考できるのか」というテーマに関して
17世紀に、レネ・デカルトは比較的新しい考えを紹介しましたーCogito ergo sum(「私は考える、ゆえに私は存在する」)この簡単な形式は、西洋哲学の基礎となりました
Googleの研究者が新たな大規模言語モデルの能力向上に向けた『Universal Self-Consistency (USC)』を披露
複数の候補者から最も一貫性のある回答を選び出し、特に数理推論やコード生成などのタスクのパフォーマンスを向上させる問題は、Googleの研究者によって彼らのUniversal Self-Consistency (USC) メソッドを介して取り組まれてきました。このメソッドはLLMを活用し、同一の回答形式や実行結果へのアクセスを必要とせずに、標準的な自己整合性と比較可能な結果を達成します。 再ランキングはアウトプットのサンプリングと事後の基準の適用により、言語モデルの生成を改善します。LLMは、人間の参照なしでモデル生成テキストを評価します。提案されたUSCメソッドは、追加のラベル付きデータや外部の再ランキングモデルを必要とせずに、標準自己整合性と同等のパフォーマンスを発揮します。 LLMは数理推論やコード生成などのタスクに優れています。従来のアプローチでは、サンプリングと基準に基づいて選択することで、LLMの出力品質を向上させてきました。自己整合性はユニークな回答を持つ仕事に効果的ですが、開放的な時代には苦労します。USCは、LLMを使用して複数の候補者から最も一貫性のある回答を選びます。多様なベンチマークで実証されたように、回答の抽出を排除したUSCは、開放的な生成タスクの向上に効果的です。 USCメソッドはLLMを用いて複数の候補者から最も一貫性のある回答を選び出すことで、回答の抽出の必要性を排除します。USCは数理推論、コード生成、要約、開放的なQAなどのベンチマークを使用して自己整合性を自由形式の生成タスクに拡張します。アプローチはLLMを使用して複数のサンプルを生成し、一貫性に基づいて回答を選択します。 USCメソッドは、オリジナルの自己整合性アプローチの制限を超えた開放的生成タスクでの有効性を示しています。USCは、異なる回答形式を持つ数理推論タスクで標準の自己整合性に匹敵し、コード生成タスクではコードの実行を必要としない実行ベースの自己整合性と同等の結果を示します。USCは長い文脈の要約タスクでベースラインを常に改善し、TruthfulQAベンチマークで最高の真実性と情報性の評価を受けます。USCのパフォーマンスは異なる回答順序に対して堅牢であり、特定のタスクの微調整によりさらに向上させることができます。 結論として、USCメソッドは長い文脈の要約や開放的な質問応答タスクにおいてベースラインを一貫して上回り、自由形式の生成タスクにおいて非常に効果的であることが示されています。LLMを使用して複数の候補者から最も一貫性のある回答を選び出すことで、数理推論タスクやコード生成タスクなどのさまざまな応用において、類似した回答形式や実際の実行結果を必要としません。USCは、さまざまな文脈で正確で信頼性の高い回答を生成するための貴重なツールです。
「エンティティ抽出、SQLクエリ、およびAmazon Bedrockを使用したRAGベースのインテリジェントドキュメントアシスタントの強化」
会話AIは、最近の生成AIの急速な発展により、特に指示微調整や人間のフィードバックからの強化学習といったトレーニング技術によって導入された大規模言語モデル(LLM)のパフォーマンス改善により、大きな進歩を遂げてきました正しくプロンプトされると、これらのモデルは特定のタスクのトレーニングデータなしで、一貫した会話を行うことができます[…]
「Q4 Inc.が、Q&Aチャットボットの構築において、数値と構造化データセットの課題に対処するために、Amazon Bedrock、RAG、およびSQLDatabaseChainを使用した方法」
この投稿は、Q4 Inc.のスタニスラフ・エシェンコと共同執筆されました企業は、問答型チャットボットを構築する主流アプローチとして、Retrieval Augmented Generation(RAG)に注目しています利用可能なデータセットの性質から生じる新たな課題が引き続き現れていることを確認していますこれらのデータセットは、しばしば数値とテキストデータの混合であり、時には構造化されています
言語モデルを使用したドキュメントの自動要約のテクニック
要約は、大量の情報をコンパクトで意味のある形式に短縮する技術であり、情報豊かな時代における効果的なコミュニケーションの基盤となっていますデータの溢れる世界で、長いテキストを短い要約にまとめることで時間を節約し、的確な意思決定を支援します要約は内容を短縮して提示することにより、時間を節約し、明確さを向上させる役割を果たします
「松ぼっくりベクトルデータベースとAmazon SageMaker JumpStartのLlama-2を使用したリトリーバル増強生成によって幻覚を軽減する」
産業全体でのLLMの採用は止まることのないように見えますが、それらは新しいAIの波を支えるより広範な技術エコシステムの一部です多くの対話AIのユースケースでは、Llama 2、Flan T5、BloomのようなLLMがユーザーのクエリに応答するために必要ですこれらのモデルは質問に答えるためにパラメトリックな知識に依存しています モデルは[…]
成功の鍵を開ける:IBM Watsonがあなたのビジネスを革命する方法
「IBM WatsonのAIが、さまざまな業界でビジネスを変革し、データに基づいた意思決定、効率化された業務、充実した顧客体験、カスタマイズされたソリューションを可能にする方法を探求してください Watsonの革新について学び、導入方法や将来の対策に必要な倫理的な考慮事項について貴重な見識を得てください」
「リトリーバル増強生成(RAG)とファインチューニング、どちらを選ぶべきですか?」
最近数ヶ月間、大型言語モデル(LLM)の人気が急上昇しています。自然言語処理、自然言語理解、自然言語生成の強みに基づいて、これらのモデルはほとんどの産業でその能力を発揮しています。生成型人工知能の導入により、これらのモデルは人間のようなテキスト応答を生成するように訓練されるようになりました。 有名なGPTモデルにより、OpenAIはLLMの力を示し、変革的な開発の道を切り拓きました。ファインチューニングやRetrieval Augmented Generation(RAG)などの手法により、より正確で文脈豊かな応答を提供するための問題に対するAIモデルの能力が向上しています。 Retrieval Augmented Generation(RAG) RAGでは、検索ベース型と生成型のモデルが組み合わされます。従来の生成型モデルとは異なり、RAGは基盤となるモデルを変更せずに、対象となる最新のデータを取り込むことで既存の知識の枠組みを超えて活動することができます。 RAGの基本的なアイデアは、特定の組織やドメインのデータに基づいて知識リポジトリを構築することです。リポジトリが定期的に更新されるため、生成型AIは最新の文脈に即したデータにアクセスすることができます。これにより、モデルは組織のニーズに合わせて、より正確かつ複雑な応答をユーザーの入力に対して返すことができます。 大量の動的データは標準の形式に変換され、知識ライブラリに保持されます。その後、データは埋め込まれた言語モデルを使用して数値表現を作成し、ベクトルデータベースに保持されます。RAGにより、AIシステムは言葉を生成するだけでなく、最新かつ関連性の高いデータを用いて生成することが保証されます。 ファインチューニング ファインチューニングは、事前に訓練されたモデルを特定のアクションを実行したり、特定の振る舞いを表示したりするためにカスタマイズする方法です。これは、多数のデータポイントで訓練された既存のモデルを取り上げて、より具体的な目標に適合するように修正することを含みます。自然言語コンテンツを生成するのに長けた事前訓練済みモデルを、ジョークや詩、要約など特定の対象に特化させることができます。ファインチューニングにより、開発者は広範なモデルの知識とスキルを特定の主題やタスクに適用することができます。 ファインチューニングは特にタスク固有のパフォーマンス向上に役立ちます。特定のタスクについて、専門的な情報を適切に選択したデータセットを通じて提供することで、モデルは精度の高い文脈に即した出力を生成する能力を獲得します。ファインチューニングにより、初めから始めるのではなく既存の情報を活用するため、トレーニングに必要な時間と計算リソースも大幅に削減されます。この方法により、モデルは狭いドメインに順応することで、より効果的に焦点を絞った回答を提供することができます。 ファインチューニングとRAGの評価時に考慮すべき要素 RAGは頻繁なモデルの再学習を必要とせずに、定期的に外部の情報源から最新のデータを要求することで、動的データの状況で非常に優れたパフォーマンスを発揮します。一方、ファインチューニングには再現性の保証がないため、信頼性が低くなります。 RAGは他の情報源から関連するデータを取得することで、LLMの機能を向上させます。これはドキュメントの要約、オープンドメインの質問応答、ナレッジベースからデータを取得できるチャットボットなど、外部の知識へのアクセスが必要なタスクに適しています。ファインチューニングは頻繁に変わるデータソースに対しては適用できない場合があります。 RAGは小さなモデルの利用を制限します。一方、ファインチューニングは小規模モデルの効果を高めることで、より迅速で費用のかかる推論を可能にします。 RAGは自動的に取得した情報に基づいて言語のスタイルやドメインの専門化を調整することはありません。一方、ファインチューニングは行動や文章スタイル、ドメイン固有の知識の調整により、特定のスタイルや専門領域との深い整合性を提供します。 RAGは一貫性があり、情報をもとに回答を生成します。ファインチューニングは幻覚を抑えることができるかもしれませんが、新しい刺激にさらされると、生成される反応は作り上げられる場合もあります。 RAGは応答生成を分割して明示的なフェーズに分け、データの取得方法に関する情報を提供することで透明性を提供します。一方、ファインチューニングは回答の基本となるロジックの透明性が低くなります。 RAGとファインチューニングのユースケースの違いは何ですか? LLMはテキストのカテゴリ分類、感情分析、テキスト生成などのさまざまなNLPタスクに対してファインチューニングできます。これらのタスクでは、入力に応じてテキストを理解し生成することが主な目的となります。一方、RAGモデルは、ドキュメントの要約、オープンドメインの質問応答、ナレッジベースからデータを取得できるチャットボットなど、外部の知識へのアクセスがタスクに必要な場合に優れたパフォーマンスを発揮します。 トレーニングデータに基づくRAGとFine-tuningの違い LLMをFine-tuningする際、彼らは特定の検索手法を使用するわけではありませんが、一般的には目標タスクに一致するラベル付きの例から構成されるタスク固有のトレーニングデータに依存します。一方、RAGモデルは検索と生成の両方のタスクを行うために訓練されます。これには、成功した検索と外部情報の使用を示すデータを生成のための教師付きデータと組み合わせる必要があります。…
少ないデータ注釈 + より多くのAI = 深いアクティブラーニング
人工知能(AI)モデルのトレーニングには、通常、大量のラベル付きデータが必要です。特に画像認識や自然言語処理などの複雑なタスクの場合、非常に高価で時間がかかることがあります。データの注釈付けは、砂浜で特定の一粒の砂を見つけるようなものです。時間と労力がかかります。 従来の解決策には、人間の注釈者を雇ったり、クラウドソーシングプラットフォームを使用したりする方法があります。これらのオプションは高価で遅いことがあります。 深層能動学習(DAL)は、能動学習と深層学習を組み合わせた技術です。能動学習はラベリングのための最も価値のあるデータポイントを選択するのに役立ち、深層学習はそのデータから複雑なパターンを学ぶのに役立ちます。 未ラベルのデータの山から、写真や動画、テキスト文書などを選び出します。DALは、例えば画像の中のぼやけたオブジェクトや文書の中の普通でない文など、混乱したり興味深いものを選び出します。これらがモデルに最も学びをもたらすものです。 DALは、貴重なデータを見つけるためにユニークな戦略を使用します。例えば、モデルが自信を持てないデータや、全体のデータセットの異なる部分を表現するデータを探すかもしれません。 DALは、AIモデルのトレーニングに必要なデータを50%以上も削減することができます。これにより時間とコスト、労力を節約することができます。さらに、DALはAIモデルをより堅牢で適応性のあるものにすることができます。最も価値のあるデータに焦点を当てることで、モデルはより豊かで微妙なパターンを学び、未知のデータでより良いパフォーマンスを発揮し、予期せぬ状況に対処することができます。 DALはまだ進化中であり、克服しなければならない課題があります。特定のタスクとモデルに対してDALを微調整する必要があります。また、データの品質を評価し、データの選択と注釈の効率的な相互作用を確保するために改善された手段が必要です。 しかし、DALの未来は明るいです。それはAIの開発を革新し、より速く、安価でアクセスしやすくする可能性があります。継続的な研究と開発により、DALは少ないデータを使用しながらAIのフルポテンシャルを発揮する鍵となるかもしれません。 結論として、DALはAIの開発においてゲームチェンジャーです。少ないデータで強力なAIモデルをトレーニングする能力は、研究者、開発者、企業にとって貴重なツールです。DALが進化し続けるにつれ、自動運転車から医療診断まで、さまざまなアプリケーションで使用されることが予想されます。
新しいLAMPスタック:生成AI開発の革新を照らす
LAMPスタックは、さまざまなドメインでの生成型AIの開発と展開において必須となってきています
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.