Learn more about Search Results 比較 - Page 15

「ファイナンシャルアドバイザーがAIを活用してより多くの価値を引き出す方法」

人工知能は、金融アドバイザリー業界を含むあらゆる分野に革命をもたらしていますデータ分析から自動取引まで、AIの広範な能力により、既に業界に大きな影響を与えています実際、金融アドバイザーはAIの進化した技術を活用して、さらなる価値を生み出すことさえ可能です以下に、その最も良い方法をご紹介します... 金融アドバイザーがAIを活用してさらなる価値を生み出す方法

‘LLMがデータアナリストを置き換えることはできるのか? LLMを活用したアナリストの構築’

私たちの中の誰もが、昨年の少なくとも1度は、ChatGPTがあなたの役割を置き換えることができるか(いや、むしろいつか)と考えたことがあると思います私も例外ではありません私たちは、最近の...

「生成型AIアプリケーションのためのプレイブック」

この記事では、Generative AIアプリケーションを実装する際の主要な考慮事項と、ビジョンを行動に変えるために人間の関与が果たす重要な役割について議論しています

「データを素早く可視化するための7つのパンダのプロット関数」

「Pandasのデータフレームでデータを視覚化したいですか?これらの便利なpandasのプロット関数を使用してください」

「OpenAIやLM Studioに頼らずにAutoGenを使用する方法」

イントロダクション OpenAIやLMスタジオに頼らずに、あなた自身のAIチームを作成する準備はできていますか?もはや銀行を荒らすことも、アプリをダウンロードすることもありません。llama-cpp-pythonの設定から、autogenフレームワークのヘルプを借りてローカルLLMのパワーを探求するまで。OpenAI APIに依存せず、Autogenのフルポテンシャルを引き出す準備をしましょう。 学習目標 詳細に入る前に、この記事の主な学習目標を概説しましょう: さまざまなAIライブラリとツールを評価・比較する方法を学ぶ。 llama-cpp-pythonがOpenAI APIの代替として提供できる方法を探索する。 2つの現実世界の使用例で獲得した知識を適用する: アルゴリズムメンターチームの構築と金融チャート生成の自動化。 AutoGenの改善されたユーザーエクスペリエンスを探索し、統合されたIPythonを通じて即時のコード実行結果を得る。 この記事はData Science Blogathonの一環として公開されました。 ツール紹介: llama-cpp-python、AutoGen、およびローカルLLM しかし、このテックツールキットの特別な点は何でしょうか? llama-cpp-pythonは、LLMAのような有名なモデルを含めて、ローカルでLLMを実行するためのゲートウェイです。コンピュータ上にAIのスーパースターがいるようなもので、さまざまなBLASバックエンドのサポートにより、速度は驚異的です! AutoGen AutoGenは、基盤モデルを使用するための高レベルな抽象化として機能する統一されたマルチエージェント会話フレームワークです。LLM、ツール、および人間の参加者を統合し、自動化されたチャットを通じて能力のある、カスタマイズ可能で会話形式のエージェントを結合します。エージェント同士が自律的にコミュニケーションして共同作業を行うことができ、複雑なタスクを効率的に進めることやワークフローを自動化することが可能です。 もしAutoGenの機能をより深く探求し、戦略的なAIチームビルディングをどのように支援するかを調べることに興味があるなら、当社の専用ブログ「Strategic  AI Team Building…

メタAI研究者が生産準備完了の強化学習AIエージェントライブラリ「Pearl」をオープンソース化

強化学習(RL)は、エージェントが適切なアクションを取り、報酬を最大化するために学習する機械学習のサブフィールドです。強化学習では、モデルは経験から学習し、最適なアクションを特定します。近年、RLは大幅に進化し、自律走行車からロボティクス、さらにはゲーミングまで、幅広い分野で応用されています。また、RLシステムの容易な開発を支援するライブラリの開発も大きく進歩しています。そのようなライブラリの例にはRLLib、Stable-Baselines 3などがあります。 成功したRLエージェントを作成するには、遅延報酬やその他の影響などの問題に対処する必要があります。また、利用と探索のバランスを見つけたり、安全性やリスク要件などの追加パラメータを考慮することで、破滅的な状況を回避する必要があります。現在のRLライブラリは非常に強力ですが、これらの問題を十分に解決していません。そのため、Metaの研究者が「Pearl」というライブラリをリリースしました。このライブラリは上記の問題を考慮し、ユーザーが実世界のアプリケーションに対して多目的なRLエージェントを開発できるようにします。 PearlはPyTorchに基づいて構築されており、GPUと分散トレーニングとの互換性があります。また、テストと評価のためのさまざまな機能も提供しています。Pearlの主なポリシーラーニングアルゴリズムはPearlAgentと呼ばれ、知識の探索、リスク感度、安全制約などの特徴があり、オフラインとオンラインの学習、安全学習、履歴の要約、再生バッファなどのコンポーネントがあります。 効果的なRLエージェントは、オフライン学習アルゴリズムを使用してポリシーを学習し、評価できるようにする必要があります。さらに、オフラインとオンラインのトレーニングには、データ収集とポリシー学習のためのセキュリティ対策が必要です。それに加えて、エージェントはさまざまなモデルを使用して状態表現を学習し、履歴を状態表現に要約して望ましくないアクションをフィルタリングする能力も持っている必要があります。最後に、エージェントは再生バッファを使用してデータを効率的に再利用し、学習効率を向上させる必要もあります。Metaの研究者は、これらのすべての機能をPearl(特にPearlAgent)の設計に取り入れ、RLエージェントの設計において多目的かつ効果的なライブラリとしての潜在能力を備えています。 研究者は、モジュール性、知識の探索、安全性などの要素を評価しながらPearlを既存のRLライブラリと比較しました。Pearlは、これらの機能をすべて実装し、必要な機能を組み込んでいない競合他社とは区別されました。たとえば、RLLibはオフラインRL、履歴の要約、再生バッファをサポートしていますが、モジュール性と知識の探索をサポートしていません。同様に、SB3はモジュール性、安全な意思決定、およびコンテキストバンディットを組み込んでいません。これが研究者によって注目される他のライブラリとの違いです。 Pearlはまた、リコメンダーシステム、オークション入札システム、クリエイティブセレクションなど、さまざまな実世界のアプリケーションをサポートする予定です。これにより、異なるドメインでの複雑な問題を解決するための有望なツールとなります。RLは近年、大幅な進歩を遂げていますが、実世界の問題を解決するための実装は依然として困難です。しかし、Pearlは知識の探索や安全性、履歴の要約などの独自の特徴を持つことで、RLの広範な統合において貴重なツールとしての潜在能力を持っています。

アルゴリズムの効率をマスターする

イントロダクション テクノロジーの世界では、アルゴリズムの効率性を理解することはまるで超能力を持っているかのようです。アルゴリズムの効率性はコンピュータ科学者だけでなく、コードを書くすべての人にとって重要なものです。このガイドでは、アルゴリズムの効率性とその計測方法について紹介します。また、わかりやすいコードの例を使ってアルゴリズムの分析と最適化の方法も学びます。このガイドを終えるころには、効率的で反応性の高いプログラムを書くための準備が整っているでしょう。 アルゴリズムの効率性とは何ですか? アルゴリズムの効率性とは、少ないリソースで多くのことをすることを意味します。つまり、最もリソース効率の良い方法でタスクを達成することです。効率的なアルゴリズムはソフトウェアやシステムの基盤となり、より高速で実行コストが低く、スケーラブルなものにします。 アルゴリズムの効率性を評価する上で重要な要素は時間計算量と空間計算量です。時間計算量はアルゴリズムの実行時間を測定し、空間計算量は使用するメモリを評価します。 アルゴリズムの効率性は異なる記法を使ってテストされます。これについてもう少し詳しく理解しましょう。 アルゴリズムの記法とは何ですか? アルゴリズムの記法は、アルゴリズムを体系的に記述するために使用される象徴的な表現や規則です。これには、特定の記号、構造、図表、および他の図形やテキスト形式が含まれます。これらの記法によって、ステップバイステップのロジックやアルゴリズムのプロセスを明瞭で標準化された方法で伝えることができます。 アルゴリズムの記法の例としては、疑似コード、フローチャート、構造化英語、UMLダイアグラム、Big O、およびコントロールテーブルがあります。これらの記法によってアルゴリズムのパフォーマンスを分析したり比較したりすることが容易になります。効率的なアルゴリズムとは、時間やメモリなどのリソースを最小限に使用してタスクを達成するアルゴリズムのことです。 主要なアルゴリズムの記法 アルゴリズムの効率性を測定する際に、主要な記法として以下の3つが挙げられます: Big O、Theta、Omegaです。それぞれの記法はアルゴリズムの振る舞いに異なる洞察を提供します。例を使ってそれぞれを簡単に紹介しましょう。 特定の要素を配列内で検索したいとします。以下にそのためのコードを示します: def search_element(arr, target):for num in arr:if num == target:return…

オープンAIがインドに進出:現地チームの設立

名声高い人工知能(AI)企業OpenAIは、インドで力強い存在を確立するために重要な進展を遂げています。TechCrunchによれば、元Twitter Indiaの責任者であるリシ・ジャイトリーがOpenAIのシニアアドバイザーとなり、インドの政策や規制の入り組んだ環境を航海する重要な役割を果たしています。この動きは、OpenAIのインド政府との関係構築および現地チームの設立を目指す幅広い戦略の一部です。 OpenAIのインド進出を支援する 情報筋によれば、リシ・ジャイトリーは、インドでのGoogleの公私連携を含む豊富な経験を持ち、後にTimes BridgeのCEOとして、インドでの重要なコネクション構築に積極的にアドバイスをしています。「ジェイトリーがOpenAIで正式に雇用されているのかは明確ではありませんが、CEOのサム・アルトマンが6月にニューデリーを訪れた後に関与した」とのことです。 OpenAIのインドにおける現状 OpenAIは、先月に商標の承認を得たばかりですが、インドに正式な存在がありません。サム・アルトマンが世界ツアー中にインドのナレンドラ・モディ首相との会談を行ったことは、潜在的な発表をほのめかしていましたが、それまでには実現していません。インドはその広大な人口と世界第二のインターネット市場という特徴から注目されています。 OpenAIとインドのAIの風景 サム・アルトマンと理事会の議長であるグレッグ・ブロックマンが一時的に退任し、改革された理事会で復帰したOpenAIの最近の指導者交代は話題を呼んでいます。同社のインドにおける関心は、資金制約による同国のAI開発の遅れの議論と重なっています。批評家は、インドのAIスタートアップが40億ドルを調達したにもかかわらず、グローバルな同業他社と比較してまだ初期段階にあると主張しています。 規制の未開領域と戦略 規制上の課題が最後の障壁の一つであることから、OpenAIはインドの進化する規制環境を理解し、それに合わせて戦略を立てています。OpenAIの投資家は、同社がインドを重要な市場と見なしていることを示していますが、現在のリーダーシップが規制を航海することへの姿勢は、緻密なアプローチを示唆しています。インド政府の国際的なAI規制に対する傾向は、複雑さを増しています。 私たちの意見 リシ・ジャイトリーの専門知識によって支えられたOpenAIのインド進出は、同社のグローバル拡大における重要な一歩です。インドの急成長するAI市場は、課題と機会を併せ持っています。同社が規制の複雑さを航海する一方、インドにおけるAIの発展の方向性を理解することへの取り組みは、綿密かつ戦略的なアプローチを強調しています。OpenAIの主要な投資家で戦略的パートナーであるマイクロソフトがインドに強力な立場を持っている一方で、OpenAIのユニークなAIへの焦点は、個別の戦略を必要としています。同社がインドでの機会を探り、関係を築いていく中で、観察者はこの戦略的な動きがインドにおけるAIの発展の未来をどのように形作るかを見守っています。

ジョンズ・ホプキンス大学とUCサンタクルーズ校の研究者が、画像ベースのAI学習の画期的な進歩であるD-iGPTを発表しました

“` 自然言語処理(NLP)は、GPTシリーズなどの大規模言語モデル(LLMs)の導入により、さまざまな言語的なタスクに対して新たなパフォーマンス基準を確立する変革期に入りました。自己回帰前処理は、モデルにシーケンス内で最も可能性の高いトークンを予測することを教えることで、この驚異的な達成に影響を与える主要な要素の1つです。この基本的な技術により、モデルは構文と意味の複雑な相互作用を吸収し、人間のように言語を理解する卓越した能力を持つことができます。自己回帰前処理は、NLPに加えてコンピュータビジョンにも大きく貢献しています。 コンピュータビジョンにおいて、自己回帰前処理は最初は成功しましたが、後続の開発によりBERTスタイルの前処理に有利な鮮明なパラダイム変化が示されました。この移行は特に注目に値しますが、最初のiGPTの結果からは、自己回帰およびBERTスタイルの前処理がさまざまなタスクで同様のパフォーマンスを発揮することが示されました。ただし、視覚表現学習における効果の高さから、その後の研究ではBERTスタイルの前処理が優先されるようになりました。例えば、MAEはランダムにマスクされたピクセルの値を予測するだけの視覚表現学習に対してスケーラブルなアプローチを示しています。 本研究では、ジョンズ・ホプキンス大学とUCサンタクルーズの研究チームがiGPTを再検討し、自己回帰前処理が広範に適用された場合に高度な視覚学習者を生み出すことができるかどうかを問いました。その過程には2つの重要な変更が組み込まれています。まず、研究チームは画像が自然にノイズや冗長性を持つため、BEiTを使用して写真を意味的なトークンにトークン化します。この変更により、自己回帰予測の焦点がピクセルから意味的なトークンにシフトし、さまざまな画像領域の相互作用のより洗練された理解が可能になります。さらに、研究チームは生成デコーダに識別デコーダを追加し、次の意味的なトークンを自己回帰的に予測します。 視覚領域内の意味的なトークンの予測は、この追加のコンポーネントの責任です。さらに興味深いことに、CLIPのように識別的にトレーニングされたモデルは、この前処理経路に最適な意味的な視覚トークンを提供します。研究チームはこの改良された方法をD-iGPTと呼んでいます。彼らの提案されたD-iGPTの効率性は、さまざまなデータセットとタスクで行われた包括的なテストによって確認されています。関連する唯一のデータセットとしてImageNet-1Kを使用し、彼らのベースサイズのモデルは、従来の最先端モデルを0.6%上回る86.2%のトップ-1分類精度を達成しました。 さらに、彼らの大規模モデルは、3600万の公開データセットで89.5%のトップ-1分類精度を達成します。D-iGPTは、パブリックデータセットで以前の最先端トレーニングと同等のパフォーマンスを発揮しますが、トレーニングデータとモデルのサイズがはるかに少なくなります。同じ前処理とファインチューニングのデータセットを使用して、研究チームはD-iGPTをセマンティックセグメンテーションにも適用し、MAEと比較して優れたパフォーマンスを発揮することを明らかにしました。 “`

スタンフォード大学とFAIR Metaの研究者が、CHOIS(言語によってガイドされたリアルな3D人間対物体の相互作用を合成するための画期的なAI方法)を発表しました

CHOIS(Choice of Human-Object Interactive Scenario)によって、スタンフォード大学とFAIRメタに所属する研究者は、3Dシーン内のオブジェクトと人間の同期した動きの生成の問題に取り組みました。このシステムは、疎なオブジェクトウェイポイント、物事と人間の最初の状態、テキストの説明に基づいて操作されます。指定された3D環境内で、両方のエンティティの現実的で制御可能な動きを生成することで、人間とオブジェクトの相互作用を制御します。 AMASSなどの大規模で高品質なモーションキャプチャデータセットを活用することで、アクション条件付きの合成やテキスト条件付きの合成を含む、生成的な人間の動きのモデリングへの関心が高まっています。以前の研究では、テキストから多様な人間の動きを生成するためにVAE形式が使用されていましたが、CHOISは人間とオブジェクトの相互作用に重点を置いています。手の動きの合成に焦点を当てる既存の手法とは異なり、CHOISはオブジェクトの掴む前の全身の動きを考慮し、人間の動きに基づいてオブジェクトの動きを予測することで、多様な3Dシーンにおける相互作用の包括的な解決策を提供します。 CHOISは、コンピュータグラフィックス、エンボディドAI、ロボット工学にとって重要な3D環境での現実的な人間の行動の合成のための重要なニーズに対応しています。CHOISは、言語の説明、初期状態、疎なオブジェクトウェイポイントに基づいて同期した人間とオブジェクトの動きを生成し、現実的な動きの生成、環境の混雑への対応、言語の説明からの相互作用の合成といった課題に取り組んでおり、多様な3Dシーンにおける制御可能な人間-オブジェクトの相互作用の包括的なシステムを提供しています。 このモデルは、言語の説明、オブジェクトのジオメトリ、初期状態に基づいて同期したオブジェクトと人間の動きを生成するために、条件付きの拡散手法を使用しています。サンプリングプロセス中に制約を組み込むことで、現実的な人間とオブジェクトの接触を保証しています。トレーニングフェーズでは、接触制約を明示的に強制することなく、オブジェクトの変換を予測するための損失関数を使用してモデルを誘導します。 CHOISシステムは、ベースラインと抜粋に対して厳密な評価が行われており、条件の一致、接触の正確性、手とオブジェクトの貫通の削減、足の浮遊などのメトリクスで優れたパフォーマンスを示しています。FullBodyManipulationデータセットでは、オブジェクトのジオメトリ損失がモデルの能力を向上させています。3D-FUTUREデータセットでは、CHOISはベースラインを上回る性能を示し、新しいオブジェクトへの汎化能力を示しています。人間の主観的研究では、入力テキストとのより良い整合性と、ベースラインと比較して優れた相互作用品質を強調しています。位置と姿勢の誤差などの定量的なメトリクスは、生成された結果の地面の真実の動きからの乖離を測定します。 結論として、CHOISは言語の説明と疎なオブジェクトウェイポイントに基づいて現実的な人間-オブジェクトの相互作用を生成するシステムです。手順では、トレーニング中にオブジェクトのジオメトリ損失を考慮し、サンプリング中に効果的なガイダンス用語を使用して結果のリアリティを向上させています。CHOISで学習された相互作用モジュールは、言語と3Dシーンからのオブジェクトウェイポイントに基づいて長期的な相互作用を生成するパイプラインに統合することができます。CHOISは、提供された言語の説明と一致する現実的な人間-オブジェクトの相互作用の生成において、大幅な改善を遂げています。 今後の研究では、入力ウェイポイントとのオブジェクト動きの一致度を向上させるために、オブジェクトのジオメトリ損失などの追加の監視を統合することができます。接触制約を強制するための高度なガイダンス用語の検討は、より現実的な結果につながる可能性があります。多様なデータセットとシナリオへの評価の拡張により、CHOISの一般化能力をテストすることができます。さらなる人間の主観的な研究は、生成された相互作用についてより深い洞察を提供するでしょう。3Dシーンからのオブジェクトウェイポイントを基に、学習された相互作用モジュールを適用して長期的な相互作用を生成することも、CHOISの適用範囲を拡大することになります。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us