Learn more about Search Results ボード - Page 15
- You may be interested
- ジェネラティブAI時代におけるデータキャ...
- 材料研究を革新するための機械学習の活用
- 「GPT-4 コードインタープリター:瞬時にP...
- メタAIは、IMAGEBINDを紹介します:明示的...
- ハーバード大学の新しいコンピューターサ...
- 「このAIニュースレターは、あなたが必要...
- 「Hugging Face LLMツールの完全初心者ガ...
- AIOpsの力を解き放つ:最適化されたITオペ...
- 「LangChainのチェーンとGPTモデルを使用...
- 2023年の製品マネージャーにとって最高のA...
- オープンソースAIゲームジャムを発表しま...
- クラスタリングアルゴリズムへの導入
- 「より良い機械学習システムの構築 –...
- DISC-FinLLMとは、複数の専門家のファイン...
- ビッグテックはおそらくAI政策を米国で決...
2024年に探索するべきトップ12の生成 AI モデル
はじめに 近年、人工知能(AI)は非凡な変革を遂げ、創造性の風景を再構築するだけでなく、多様な産業における自動化の新たな基準を設定する先駆的な技術となっています。2024年に入ると、これらの先進的なモデルは画期的な能力、広範な応用、そして世界に紹介する先駆的なイノベーションにより、その地位を固めました。本記事では、今年の主要な生成型AIモデルについて詳しく探求し、彼らの革新的な能力、様々な応用、そして世界にもたらすパイオニア的なイノベーションについて包括的に説明します。 テキスト生成 GPT-4:言語の神童 開発者:OpenAI 能力:GPT-4(Generative Pre-trained Transformer 4)は、文脈の深い理解、微妙な言語生成、およびマルチモーダルな能力(テキストと画像の入力)で知られる最先端の言語モデルです。 応用:コンテンツの作成、チャットボット、コーディング支援など。 イノベーション:GPT-4は、規模、言語理解、多様性の面でこれまでのモデルを上回り、より正確かつ文脈に即した回答を提供します。 この生成型AIモデルにアクセスするには、こちらをクリックしてください。 Mistral:専門家の混合体 開発者:Mistral AI 能力:Mistralは、専門的なサブモデル(エキスパート)に異なるタスクを割り当てることで効率と効果を向上させる、洗練されたAIモデルです。 応用:高度な自然言語処理、パーソナライズされたコンテンツの推薦、金融、医療、テクノロジーなど、様々なドメインでの複雑な問題解決など、幅広い応用があります。 イノベーション:Mistralは、ネットワーク内の最適なエキスパートにタスクを動的に割り当てることによって特徴付けられます。このアプローチにより、専門的で正確かつ文脈に適した回答が可能となり、多面的なAIの課題処理において新たな基準を設定します。 このMistral AIにアクセスするには、こちらをクリックしてください。 Gemini:多面的なミューズ 開発者:Google AI Deepmind…
「UnbodyとAppsmithを使って、10分でGoogle Meet AIアシスタントアプリを作る方法」
「ほぼコードなしで、Google Meetのビデオ録画を処理し、メモを作成し、アクションアイテムをキャプチャするAIのミーティングアシスタントアプリを開発する方法を学びましょう」
Google Gemini APIを使用してLLMモデルを構築する
導入 ChatGPTとOpenAIのGPTモデルのリリース、およびMicrosoftとのパートナーシップにより、AIの領域にTransformerモデルをもたらしたGoogleはみんなが諦めた存在となりました。 GPTモデルがリリースされてから1年以上が経過しましたが、GoogleからはPaLM API以外に大きな動きはありませんでした。PaLM APIもあまり注目されず失敗に終わりました。そしてGoogleが突如として紹介した基盤となるモデルのグループ、Geminiが登場しました。Geminiの発売からわずか数日後、GoogleはGemini APIをリリースしました。このガイドでは、Gemini APIをテストし、最終的にはそれを使用してシンプルなチャットボットを作成します。 学習目標 GoogleのGeminiシリーズの基礎知識を学ぶ。これには異なるモデル(Ultra、Pro、Nano)と、テキストと画像のサポートを中心とする多様性が含まれます。 Gemini Proのチャット・モデルを使用してチャットベースのアプリケーションを作成するスキルを開発し、チャットの履歴を維持し、ユーザーの文脈に基づいて応答を生成する方法を理解する。 Geminiが安全であるために、不安全なクエリを処理し、さまざまなカテゴリの安全性評価を提供することにより、責任あるAIの使用を保証する方法を探索する。 Gemini ProとGemini Pro Visionモデルを使用した実践的な経験を積み、画像の解釈と説明を含む、テキスト生成とビジョンに基づく機能を探索する。 Gemini APIとLangchainを統合して、相互作用のプロセスを簡素化する方法を学び、複数のクエリを効率的に処理するための入力と応答のバッチ処理について学ぶ。 この記事はデータサイエンスブログサラソンの一部として公開されました。 Geminiとは何ですか? Geminiは、Googleが構築し導入した新しい基盤モデルのシリーズです。これはこれまでのPaLMと比べて最も大きなモデルセットであり、最初から多様性に焦点を当てて構築されています。これにより、Geminiモデルはテキスト、画像、オーディオ、ビデオなどの異なる情報タイプの組み合わせに強力です。現在、APIは画像とテキストのサポートを提供しています。Geminiは、ベンチマークで最先端のパフォーマンスを達成し、多くのテストでChatGPTとGPT4-Visionモデルを上回っています。 Geminiには、サイズに基づいて3つの異なるモデルがあります。サイズの順に、Gemini Ultra、Gemini Pro、Gemini…
ルーシッドドリーマー:インターバルスコアマッチングを介した高品位のテキストから3D生成
最近のテキストから3DジェネレーティブAIフレームワークの進歩は、生成モデルにおける重要な節目を示していますこれらは、数多くの現実世界のシナリオで3Dアセットを作成する新たな可能性を開拓していますデジタル3Dアセットは現在、私たちのデジタル存在において不可欠な場所を占めており、複雑な環境やオブジェクトとの包括的な視覚化や対話を可能にしています
ミストラルAIの最新のエキスパート(MoE)8x7Bモデル
ミストラルAIのMoE 8x7Bを発見しましょうこれはMixture of Experts frameworkを用いた「スケールダウンされたGPT-4」ですこのモデルがどのように印象的な多言語対応能力と効率性を実現しているか、さまざまなタスクで競合モデルを上回るかを学んでください
『ELS+ Stream Tool』
ELS+は、企業がデータから有益な洞察を抽出し、意思決定を改善し、パフォーマンスを向上させるためのAIパワードアナリティクスツールです
「安定拡散を使用したハイパーリアルな顔を生成する3つの方法」
あなたはベースモデルを使用してイメージを生成する方法を学び、画像の品質を向上するためにStable Diffusion XLモデルにアップグレードする方法、そして高品質の肖像画を生成するためにカスタムモデルを使用する方法を学びました
『ODSCのAIウィークリーレビュー:12月15日の週』
「人工知能は、出てきたニュースの数々とともに光の速さで進化していますだから、ODSCで取り上げた話題や見落としてしまった他のストーリーを振り返ってみましょうそうすれば、すべてのAIに関する情報を把握できますよ...」
デルタテーブルの削除ベクトル:Databricksの操作のスピードアップ
伝統的に、Delta Lakeはコピーオンワイトのパラダイムのみをサポートしており、元のデータファイルは書き込まれるたびに変更されます例:ファイル内の1行が削除されると、...
「オープンソースツールを使用して、プロのように音声をクローンし、リップシンク動画を作る方法」
紹介 AI音声クローンはソーシャルメディアで大流行しています。これにより、創造的な可能性が広がりました。ソーシャルメディアで有名人のミームやAI声の上書きを見たことがあるかもしれません。それがどのように行われているのか疑問に思ったことはありませんか?Eleven Labsなど、多くのプラットフォームがAPIを提供していますが、オープンソースソフトウェアを使用して無料で行うことはできるのでしょうか?短い答えは「YES」です。オープンソースには音声合成を実現するためのTTSモデルとリップシンクツールがあります。したがって、この記事では、音声クローンとリップシンクのためのオープンソースのツールとモデルを探求してみましょう。 学習目標 AI音声クローンとリップシンクのためのオープンソースツールを探求する。 FFmpegとWhisperを使用してビデオを転写する。 Coqui-AIのxTTSモデルを使用して声をクローンする。 Wav2Lipを使用してビデオのリップシンクを行う。 この技術の実世界での使用例を探求する。 この記事はData Science Blogathonの一環として公開されました。 オープンソーススタック 既にご存じのように、私たちはOpenAIのWhisper、FFmpeg、Coqui-aiのxTTSモデル、およびWav2lipを私たちの技術スタックとして使用します。しかし、コードに入る前に、これらのツールについて簡単に説明しましょう。そして、これらのプロジェクトの作者に感謝します。 Whisper: WhisperはOpenAIのASR(自動音声認識)モデルです。これは、多様なオーディオデータと対応するトランスクリプトを用いて、650,000時間以上のトレーニングを受けたエンコーダ-デコーダトランスフォーマーモデルです。そのため、オーディオからの多言語の転写に非常に適しています。 エンコーダは、30秒のオーディオチャンクのログメルスペクトログラムを受け取ります。各エンコーダブロックは、オーディオ信号の異なる部分を理解するためにセルフアテンションを使用します。デコーダは、エンコーダからの隠れ状態情報と学習済みの位置エンコーディングを受け取ります。デコーダはセルフアテンションとクロスアテンションを使用して次のトークンを予測します。プロセスの最後に、認識されたテキストを表すトークンのシーケンスを出力します。Whisperの詳細については、公式リポジトリを参照してください。 Coqui TTS: TTSはCoqui-aiのオープンソースライブラリです。これは複数のテキスト読み上げモデルをホストしています。Bark、Tortoise、xTTSなどのエンドツーエンドモデル、FastSpeechなどのスペクトログラムモデル、Hifi-GAN、MelGANなどのボコーダなどがあります。さらに、テキスト読み上げモデルの推論、調整、トレーニングのための統一されたAPIを提供しています。このプロジェクトでは、xTTSというエンドツーエンドの多言語音声クローニングモデルを使用します。これは英語、日本語、ヒンディー語、中国語などを含む16の言語をサポートしています。TTSについての詳細情報は、公式のTTSリポジトリを参照してください。 Wav2Lip: Wav2Lipは、「A Lip Sync…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.