Learn more about Search Results ダウンロード - Page 15

コア42とCerebrasは、Jais 30Bのリリースにより、アラビア語の大規模言語モデルの新たな基準を設定しました

CerebrasとCore42は、G42の企業であり、クラウドおよび生成AIのためのUAEベースの国家規模の活性化促進者である。彼らは、彼らのオープンソースのArabic Large Language Model(LLM)の最新かつ最も優れたバージョンであるJais 30Bの発売を発表しました。 Jais 30Bは、2023年8月にリリースされた前モデルのJais 13Bと比較して、大幅なアップグレードです。この新しいモデルは300億のパラメータを持ち、Jais 13Bの130億と比較して、大幅に大きなデータセットでトレーニングされました。これにより、言語生成、要約、およびアラビア語-英語翻訳の大幅な改善が実現しました。 Jais 30Bは、現在単一言語の英語モデルと同等であり、Foundation Modelの評価ではほとんどのオープンソースモデルを凌駕しています。このモデルは、アラビア語と英語の両方でより長く、より詳細な応答を生成することもできます。 Core42は、責任ある安全なAIの実践に取り組んでおり、Jais 30B開発チームは、バイアスやモデルによる憎悪や有害なコンテンツの生成を防止するためにプロセスとポリシーをさらに強化しました。 Jais 30BはHugging Faceでダウンロード可能です。 Hugging Face foundational model: https://huggingface.co/core42/jais-30b-v1 Hugging Face…

「5つの最高のスケッチから画像へのAIレンダリングツール(2023年11月)」

デジタルアートとデザインのダイナミックな領域では、スケッチを見事なイメージに変換する能力は高く評価される能力です人工知能の登場により、このプロセスは革命化され、AIによるスケッチから画像へのレンダリングツールが提供されたため、クリエイターはスケッチされたアイデアを洗練されたビジュアルに驚くべき正確さと感性で解釈し、描写することができますこれらのAIによるスケッチからイメージへのレンダリングツールは・・・

ブレイブがLeoを紹介:ウェブページやビデオのリアルタイム要約を含むさまざまなタスクをサポートする人工知能アシスタント

利用者のプライバシーと正確なAIインタラクションに向けた大きな進歩として、名高いブラウザ開発者であるBraveが、デスクトップ版1.6のリリースと共に、その< a href=”https://www.voagi.com/create-chat-assistant-for-pdfs-and-articles-without-openai-key.html”>ネイティブAIアシスタント、レオを公開しました。その基盤モデルとして、Meta Llama 2の動力を使っているレオは、訪れたウェブページのコンテンツに基づいて利用者のクエリに応答し、AI生成コンテンツに関連する懸念事項を効果的に解決します。 今年初めにリリースされたBrave検索AIサマライザーの拡張機能であるレオは、検索バーから直接アクセスできます。8月のテストフェーズでは、Nightlyチャンネル(バージョン1.59)を通じて、数万人の開発者と利用者がブラウザとレオをダウンロードして評価し、その結果、レオは正式にBraveバージョン1.60に統合されました。 レオの特徴の一つは、利用者のプライバシーに対する取り組みです。他のチャットボットとは異なり、レオは会話を収集せず、利用者を追跡せず、無意味に反応を生成しません。代わりに、正確で関連性の高い情報を提供するために、ウェブコンテンツにのみ依存しています。 レオの無料版は、高度にセキュアなLlama 2モデルをベースにしています。これは、Metaのオープンソースモデルの特殊バリエーションです。しかしながら、Braveはレオプレミアムという有料サービスも導入しており、月額$15で提供されています。レオプレミアムには、論理的な推論とコード作成を重視したAnthropicが開発したClaude Instantモデルが搭載されています。このモデルは、より構造化された応答、指示の実行能力の向上、数学、プログラミング、多言語対応、質疑応答インタラクションの改善などを提供します。 Braveは、回答の正確さをさらに向上させるために、Anthropicのテクノロジーを統合し、Braveの検索APIを活用して最新のClaude 2モデルを訓練しています。このアプローチにより、Claude製品は検索支援生成(RAG)を達成し、より正確な回答を提供し、生成AIの幻想的傾向を抑えることができます。 安全性とプライバシーの面では、Braveは広範な対策を講じています。無料版では、レオの会話は匿名でプライベートに保たれ、対話の記録は行われません。データはモデルの訓練に使用されず、アカウントやログインは必要ありません。逆プロキシ技術により、すべての通話が匿名サーバーを経由するため、Braveは通話と利用者のIPアドレスとの関連を確立することはありません。 レオのプレミアム版を選択した利用者には、登録時にリンクできないトークンが発行され、購読の検証プロセスが保護されます。これにより、Braveは利用活動とユーザーの購入情報をリンクすることができず、完全なプライバシーが確保されます。さらに、利用者のEメールは購読の検証にのみ使用され、追跡されることはありません。 今後、Braveはプレミアム版に追加のモデルを導入する予定です。ネットワークの速度制限、対話の品質、購読者向けの独占特典なども改善されます。 現在は、Brave 1.6のデスクトップ版で利用できるレオとレオプレミアムは、今後数ヶ月でAndroidとiOSプラットフォームにも展開されます。この革新的な開発は、ブラウザ技術とAI統合の重要な進歩を示し、Braveの利用者志向およびプライバシー重視のイノベーションに対する取り組みを再確認します。 The post Braveがレオを紹介:ウェブページやビデオのリアルタイム要約など、さまざまなタスクをサポートする人工知能アシスタント appeared first on MarkTechPost。

逆戻り、個人化、そしてKaggle症候群

最近、私はKaggleのBlack Friday Predictionデータセットを使用した予測のケーススタディに取り組みましたこのデータセットは6年前に作成され、32,000回以上ダウンロードされています100を超える…

「VSCodeをDatabricksと統合して、データエンジニアリングのパイプラインとモデルを構築および実行する」

「データブリックスクラスタを使用して、ローカルでデータエンジニアリングパイプラインと機械学習モデルを開発しますVSCodeとDatabricksを統合して、よりスムーズな開発を実現します」

ヒットパウ写真エンハンサーレビュー:最高のAI写真エンハンサー?

「AI技術を使って写真を高めたいですか? 本記事では、HitPaw Photo Enhancerのレビューを読んで、それが投資に値するかどうかを見つけてください」

PythonにおけるTwitterの感情分析- Sklearn | 自然言語処理

ChatGPTや他の同じようなアプリケーションの大量導入により、今日の業界における自然言語処理の重要性や影響を無視することは不可能です...

「カスタムクエリを使用してビジネス特有のドキュメントでAmazon Textractをカスタマイズする」

「Amazon Textractは、スキャンされたドキュメントからテキスト、手書き、データを自動的に抽出する機械学習(ML)サービスですQueriesは、自然言語を使用して、さまざまな複雑なドキュメントから特定の情報を抽出する機能ですCustom Queriesは、ビジネス固有の非標準ドキュメントに対してQueries機能をカスタマイズする方法を提供します」

「AWS上でのPySparkの展開におけるベストプラクティスは何ですか?」

イントロダクション ビッグデータと高度な分析において、PySparkは大規模なデータセットの処理と分散データの分析における強力なツールとして登場しています。AWSクラウド上でPySparkを展開することは、データ密集型のタスクに対してスケーラビリティと柔軟性を提供する画期的なものであり、Dockerコンテナと組み合わせることでシームレスで効率的なソリューションとなります。 しかし、クラウドインフラ上でPySparkを展開することは複雑で困難な場合があります。分散コンピューティング環境の設定やSparkクラスタの構成、リソースの管理などの詳細は、多くの人々がその完全な潜在能力を引き出すことから遠ざけてしまいます。 学習目標 PySpark、AWS、およびDockerの基本的なコンセプトを学び、クラウド上でPySparkクラスタを展開するための堅固な基盤を確立します。 AWSを使用してPySparkをDockerで設定する包括的なステップバイステップガイドに従い、AWSの設定、Dockerイメージの準備、およびSparkクラスタの管理を行います。 モニタリング、スケーリング、およびベストプラクティスへの適合により、AWS上でPySparkのパフォーマンスを最適化する戦略を発見し、データ処理ワークフローの最大限の活用を実現します。 この記事はデータサイエンスブログマラソンの一部として公開されました。 前提条件 PySparkをAWS上でDockerを使用して展開するための旅に出る前に、次の前提条件を満たしていることを確認してください: 🚀 ローカルPySparkインストール: PySparkアプリケーションを開発およびテストするためには、ローカルマシンにPySparkをインストールすることが重要です。オペレーティングシステムの公式ドキュメントに従ってPySparkをインストールします。このローカルインストールは開発環境として機能し、AWSに展開する前にPySparkコードの記述とテストを行うことができます。 🌐 AWSアカウント: PySparkの展開に必要なクラウドインフラストラクチャとサービスにアクセスするためには、有効なAWS(Amazon Web Services)アカウントが必要です。AWSアカウントを持っていない場合は、AWSのウェブサイトでサインアップすることができます。新規ユーザにはリソースが制限された無料利用枠が提供されていますが、支払い情報の提供が必要となります。 🐳 Dockerのインストール: Dockerはこの展開プロセスで重要なコンポーネントです。Ubuntuオペレーティングシステム向けのインストール手順に従って、ローカルマシンにDockerをインストールします。Dockerコンテナを使用して、PySparkアプリケーションを一貫した形でカプセル化して展開することができます。 Windows 以下の Windows向けDocker…

MLモデルのDocker化:デプロイメントガイド

この包括的なML愛好家向けガイドは、Dockerを使用してMLモデルのパッケージ化と実行についての旅に連れて行きます

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us