Learn more about Search Results いくつかの - Page 15

「PySpark UDFを使用して合成テーブルの列間にOne-To-Oneの関係を作成する方法」

最近、私はDatabricks Labs Data Generatorを使って、まったく合成的なデータセットをゼロから作成する遊びをしていますその一環として、異なる...周りの販売データを構築することを考えました

「データサイエンスプロジェクトのための8つのGitHubの代替品」

イントロダクション GitHubの鳥かごから自由になる準備はできていますか? GitHubは長い間、コード管理の信頼できるパートナーでしたが、データサイエンスプロジェクトの固有のニーズに特化した代替プラットフォームの広大な景色を探索する時が来ました。これらのプラットフォームの主な特徴は、大規模なデータセットを簡単に処理できること、Jupyterノートブックがシームレスに統合されること、そしてコラボレーションが楽になることです。データサイエンスプロジェクトにおけるGithubの代替案トップ8を見てみましょう! GitHubの代替案を検討する理由 GitHubは間違いなく強力なプラットフォームですが、データサイエンスプロジェクトにはいくつかの制限があります。その主な欠点の1つは、大規模なデータセットのサポートが不足していることであり、大量のデータを扱うデータサイエンティストにとっては大きな障害となる場合があります。さらに、GitHubはコードのバージョニングとコラボレーションに焦点を当てているため、データサイエンスチームの特定のニーズを十分に満たすことができないことがあります。データの管理と分析に高度な機能を必要とすることが多いデータサイエンスチームにとっては、もう少し進んだ機能が必要です。 これらの問題に取り組むために、データサイエンスのプロジェクトにはこれらのGitHubの代替案を検討することができます! Bitbucket Bitbucketは、データサイエンスプロジェクトに特化したさまざまな機能を提供する人気のあるGitHubの代替案です。Jupyterノートブックとのシームレスな統合を提供し、データサイエンティストが簡単にノートブックを共有して共同作業することができます。Bitbucketは大規模なデータセットの堅牢なサポートも提供しており、データ集中型のプロジェクトには優れた選択肢です。 このGitHubの代替案でデータサイエンスプロジェクトを始めるためには、ここをクリックしてください。 GitLab GitLabは、データサイエンスプロジェクト向けの包括的な機能セットを提供するGitHubの強力な代替案です。組み込みの継続的インテグレーションと展開機能を提供し、データサイエンティストがワークフローを自動化しやすくしています。GitLabはデータのバージョニングやデータの系統のような高度なデータ管理機能も提供しており、データサイエンスプロジェクトにおける再現性と追跡性の担保に不可欠です。 GitLabを探索するためには、ここをクリックしてください。 SourceForge SourceForgeは、オープンソースソフトウェア開発に広く利用されてきた歴史のあるプラットフォームです。他の代替案と比べると洗練されたレベルは提供していませんが、SourceForgeはデータサイエンスプロジェクトのホスティングと管理のための信頼性のある簡単なソリューションを提供しています。バージョン管理、問題追跡、およびコラボレーションの機能を提供しており、小規模なデータサイエンスチームに適しています。 このGitHubの代替案をデータサイエンスプロジェクトに探索するためには、ここをクリックしてください。 GitKraken GitKrakenは、データサイエンスプロジェクト向けの使いやすいインターフェースとさまざまな機能を提供する人気のあるGitクライアントです。JupyterノートブックやRStudioなどの人気のあるデータサイエンスツールとのシームレスな統合を提供し、データサイエンティストがプロジェクトを管理しやすくしています。また、GitKrakenはバージョン管理履歴から洞察を得るための高度な可視化機能も提供しています。 このGitHubの代替案でプロジェクトを始めることができます!ここをクリックしてください。 AWS CodeCommit AWS CodeCommitは、Amazon Web Servicesが提供する完全に管理されたソースコントロールサービスです。Amazon…

「2023年のトップ8のAIトレンド:年間レビュー」

葉っぱが金色に変わり、12月の寒さが広がる中、人工知能の領域で目覚ましい進歩が見られた今年を振り返る時が来ました。2023年は単なる進歩の年ではありませんでした。それはトライアンフの年であり、AIが成し遂げられる限界が繰り返し押し広げられ、再定義された年でした。LLM(大規模言語モデル)の能力における画期的な進展から、前例のないほど世界とのナビゲーションや相互作用が可能な自律エージェントの登場まで、この年はこの変革的な技術の無限の可能性を示すものでした。 この包括的な探求の中で、私たちは2023年のAIを定義した8つの主要なトレンドについて掘り下げ、産業を再構築し、未来を革命化する革新を明らかにしていきます。だから、AI愛好家の皆さん、私たちは技術史の記録に永遠に刻まれる一年についての旅に出発です。 RLHFとDPOの微調整 2023年は、大規模言語モデル(LLM)の能力を向上させるための重要な進展が見られました。2つの主要なアプローチが登場しました: 人間のフィードバックに基づく強化学習(RLHF):この手法は、人間のフィードバックを活用してLLMの学習プロセスをガイドし、持続的な改善と進化するユーザーのニーズや好みに対応させることができます。このインタラクティブなアプローチにより、LLMは複雑または主観的な領域において微妙な理解力と意思決定能力を開発することができます。 直接的な選好最適化(DPO)::DPOはよりシンプルな代替手法であり、明示的な強化信号を必要とせずにユーザーの選好に直接最適化します。このアプローチは効率性とスケーラビリティを重視し、より速い適応と展開を必要とするアプリケーションに最適です。そのすっきりした性格により、ユーザーフィードバックに基づいてLLMの振る舞いを迅速に調整することができ、進化する好みに合わせることができます。 RLHFとDPOはLLMの開発における重要な進展を表していますが、既存の微調整手法を置き換えるのではなく、補完するものです: 事前学習:大規模なテキストとコードのデータセットを用いてLLMを訓練し、一般的な言語理解能力を学習させること。 微調整:特定のタスクまたはデータセットに基づいてLLMをさらに訓練し、特定のドメインやアプリケーションに適した能力を調整すること。 マルチタスク学習:LLMを複数のタスクに同時に訓練することで、共有表現を学習し、各タスクのパフォーマンスを向上させること。 LLMの効率性に対処する LLMの能力が向上するにつれて、計算上の制約とリソースの限界が重要な懸念事項となりました。その結果、2023年の研究はLLMの効率性の向上に焦点を当て、以下のような技術の開発をもたらしました: FlashAttention:この革新的なアテンションメカニズムは、LLMの計算コストを大幅に削減します。これにより、より速い推論と訓練が可能になり、LLMをリソースに制約のある環境でより実用的に利用し、実世界のアプリケーションに統合することができるようになります。 LoRA および QLoRA:LoRAやQLoRAなどの手法は、2023年にも提案された軽量かつ効率的なLLMの微調整方法を提供します。これらの手法は、既存のLLMアーキテクチャに追加された小さなモジュールであるアダプターに依存し、再トレーニングすることなくカスタマイズを可能にします。これにより、著しい効率の向上、より速い展開時間、さまざまなタスクへの適応性の向上が実現されます。 これらの進展は、効率的なLLMへの需要の増大に対応し、この強力な技術への広範な導入の道を開き、結果としてこの技術へのアクセスを民主化することにつながります。 検索補完生成(RAG)の浸透 純LLMは巨大な可能性を秘めていますが、それらの正確性と実証的根拠に関する懸念は依然として存在しています。検索補完生成(RAG)は、既存のデータや知識ベースとLLMを組み合わせることで、これらの懸念に対処する有望な解決策として登場しました。このハイブリッドアプローチにはいくつかの利点があります: エラーの減少:外部情報から事実情報を取り込むことにより、RAGモデルはより正確で信頼性のある出力を生成することができます。 拡張性の向上:RAGモデルは純LLMに必要な大規模なトレーニングリソースの必要性を排除し、大規模なデータセットに適用することができます。 低コスト:既存の知識リソースを利用することにより、LLMのトレーニングおよび実行に関連する計算コストを削減することができます。 これらの利点により、RAGは検索エンジン、チャットボット、コンテンツ生成など、さまざまなアプリケーションにおける貴重なツールとして位置付けられています。 自律エージェント…

「NotebookLMは12以上の新機能を追加します」

「アメリカで現在利用可能なNotebookLMには、読みやすくメモを取り、執筆プロジェクトを整理するための新機能が追加されました」(Amerika de genzai riyou kanou na NotebookLM ni wa, yomi yasuku memo o tori, shippitsu purojekuto o seiri suru tame no shin kinou ga…

消失勾配問題と爆発勾配問題:ニューラルネットワークの基本事項

以前の記事の中で、私たちはニューラルネットワークがバックプロパゲーションアルゴリズムを通じて学習する方法について説明しました主なアイデアは、出力層から始まり、誤差を逆伝播させる、つまり「プロパゲート」するということです...

『TiDE:トランスフォーマーよりも打ちのめす「恥ずかしく」シンプルなMLP』

産業が進化し続ける中で、正確な予測の重要性は、電子商取引、医療、小売り、農業など、どの業界で働くにしても譲れない財産として存在します...重要性は...

『UltraFastBERT:指数関数的に高速な言語モデリング』

言語モデルと生成型AIは、その能力で有名であり、AI業界では注目されている話題です世界中の研究者たちは、効果と能力を向上させていますこれらのシステムは、通常、深層学習モデルであり、広範なラベル付きデータで事前学習され、自己注意のためのニューラルネットワークを組み込んでいますフィードフォワード、再帰、埋め込み、注意の各種レイヤーを使用して、入力テキストを処理し、[...]を生成します

最も近い近隣法を用いた写真モザイク:デジタルアートのための機械学習

ここに例があります!ズームインアニメーションフルスクリーンでの視聴をおすすめします(動画提供者の著者)技術革新は急速に進んでおり、デジタルストレージは非常に安くてアクセスしやすくなりましたさらに、ほとんどの人が高画質の画像を撮影できるカメラを搭載したスマートフォンを持っています大多数の人は...

「Power BI ビジュアライゼーションの究極ガイド」

イントロダクション Power BIは、データサイエンスの中でも強力なツールとして浮上しており、データに基づく洞察に根ざした情報を提供することで、企業が情報に基づいた意思決定を行うことを可能にしています。Microsoftによって開発されたPower BIビジュアライゼーションは、ユーザーがデータを視覚的に表現し、洞察を組織全体に円滑に伝達することを可能にします。また、広範なデータソースとの接続を確立しながら、アプリケーションやウェブサイトにシームレスに埋め込む能力も注目されています。 間違いなく、データサイエンスの分野で最も重要な要素の一つは、データの可視化の実践です。これは、視覚的要素(チャート、グラフ、マップなど)を用いて情報やデータをグラフィカルに説明することを意味します。これらの視覚ツールを活用することで、データの可視化はデータをより理解しやすくし、傾向や外れ値、パターンを判断しやすくします。要するに、Power BIは生データを視覚的に一貫性のある語りに変換する能力を持つ、典型的なツールであり、複雑なデータセットの普遍的な理解を向上させます。 Power BIビジュアライゼーションの理解 Power BIビジュアライゼーションは、Power BIを使用してデータをグラフィカルに表現するプロセスです。これにより、複雑なデータセットをより直感的で視覚的な形式で理解することができます。Power BIビジュアライゼーションは重要であり、テキストベースのデータでは明らかではない複雑な概念を理解したり、新しいパターンを識別したりすることができます。 Power BIビジュアライゼーションのメリットは多岐に渡ります。データと対話することができ、詳細な情報を得るためにチャートやグラフを掘り下げたり、他の人とレポートを作成して共有したりすることができます。また、ユーザーはユニークな360度のビジネスビューを持つパーソナライズされたダッシュボードを作成することも可能です。 Power BIビジュアライゼーションの種類 Power BIは、データを異なる方法で表現するための幅広いビジュアライゼーションを提供しています。 A. チャート チャートは、Power BIでのデータのグラフィカル表現です。これを使用して、複雑なデータセットを簡素化し、データを理解しやすく解釈できるようにします。Power BIはさまざまなチャートの種類を提供しており、それぞれ異なる種類のデータやデータの可視化タスクに適しています。 1.…

最初のネイティブLLMは電気通信業界に最適化されました

キネティカのSQL-GPT for Telecomは、ネットワークのパフォーマンスと顧客体験を最適化するためのより高速な分析と対応を可能にします

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us