Learn more about Search Results EU - Page 159
- You may be interested
- 「Pythonでのプロトコル」
- スタンフォード大学の研究者が、大規模言...
- 「大数の法則の解明」
- 「A.I.ツールが手術台で脳腫瘍を診断」
- 「LLMsにおけるエンタープライズ知識グラ...
- ボーダフォンは、AWS DeepRacerとアクセン...
- 検索における生成AIが120以上の新しい国と...
- 「大規模言語モデルの読み込みについての...
- 「自分の武器を選ぶ:うつ病AIコンサルタ...
- パンダのプレイブック:7つの必須の包括的...
- チャットGPTの落とし穴を乗り越える方法
- CPU上でBERT推論をスケーリングアップする...
- 「AIと働き方の未来:AI時代における労働...
- 「このAI論文は、人間ではなくLLMを使用し...
- timeitとcProfileを使用してPythonコード...
レコメンデーションシステムにおけるディープラーニング:入門
レコメンダーシステムは、現在最も急速に進化している産業用機械学習アプリケーションの一つですビジネス的な観点から見れば、これは驚くべきことではありませんより良いレコメンデーションはより多くのユーザーをもたらしますそれは...
Video-ControlNetを紹介します:コントロール可能なビデオ生成の未来を形作る革新的なテキストからビデオへの拡散モデル
近年、テキストベースのビジュアルコンテンツ生成が急速に発展しています。大規模なイメージテキストペアでトレーニングされた現在のテキストから画像へ(T2I)の拡散モデルは、ユーザーが提供したテキストプロンプトに基づいて高品質な画像を生成する驚異的な能力を発揮しています。画像生成の成功は、ビデオ生成にも拡張されています。いくつかの方法は、T2Iモデルをワンショットまたはゼロショットの方法でビデオを生成するために利用していますが、これらのモデルから生成されたビデオはまだ一貫性がないか、バラエティに欠けています。ビデオデータをスケーリングアップすることで、テキストからビデオ(T2V)の拡散モデルを使用すると、生成されたコンテンツに制御がかかる一貫したビデオを作成できます。ただし、これらのモデルは、生成されたコンテンツの制御ができないビデオを生成します。 最近の研究では、深度マップを制御できるT2V拡散モデルが提案されています。ただし、一貫性と高品質を実現するには大規模なデータセットが必要で、リソースに優しくありません。また、T2V拡散モデルは、一貫性、任意の長さ、多様性を持つビデオを生成することはまだ難しいとされています。 これらの問題に対処するために、制御可能なT2VモデルであるVideo-ControlNetが導入されました。Video-ControlNetには、以下の利点があります。モーションプライオリティと制御マップを使用することで一貫性が向上し、最初のフレームの条件付け戦略を採用することで任意の長さのビデオを生成することができ、画像からビデオへの知識移行によるドメイン汎化、限られたバッチサイズを使用してより速い収束でリソース効率が向上します。 Video-ControlNetのアーキテクチャは、以下の通りです。 目的は、テキストと参照制御マップに基づいてビデオを生成することです。そのため、生成モデルは、事前にトレーニングされた制御可能なT2Iモデルを再編成し、追加のトレーニング可能な時間層を組み込み、フレーム間の細かい相互作用を促進する空間・時間自己注意メカニズムを提示することで開発されました。このアプローチにより、広範なトレーニングがなくても、コンテンツに一貫性のあるビデオを作成できます。 ビデオ構造の一貫性を確保するために、著者らは、ノイズ初期化段階でノイズ除去プロセスにソースビデオのモーションプライオリティを組み込む先駆的なアプローチを提案しています。モーションプライオリティと制御マップを活用することで、Video-ControlNetは、マルチステップのノイズ除去プロセスの性質による他のモーションベースの方法のエラー伝搬を避けながら、フリッカリングが少なく、入力ビデオのモーション変化に近くなるビデオを生成することができます。 さらに、以前の方法が直接ビデオ全体を生成するようにモデルをトレーニングするのに対して、この研究では、初期フレームに基づいてビデオを生成する革新的なトレーニングスキームが導入されています。このような簡単で効果的な戦略により、コンテンツと時間的学習を分離することがより簡単になります。前者は最初のフレームとテキストプロンプトで提示され、モデルは、後続フレームの生成方法のみを学習する必要があります。これにより、ビデオデータの需要が軽減され、画像領域から生成能力を継承することができます。推論中、最初のフレームは、最初のフレームの制御マップとテキストプロンプトによって条件付けられて生成されます。その後、最初のフレーム、テキスト、および後続の制御マップによって条件付けられた後続フレームが生成されます。また、このような戦略の別の利点は、モデルが前のイテレーションの最後のフレームを初期フレームとして扱い、無限に長いビデオを自動的に生成できることです。 これがどのように機能するかを説明し、著者によって報告された結果と最先端のアプローチとの比較を含む制限されたサンプル結果が以下の図に示されています。 これはVideo-ControlNetの概要であり、最新の品質と時間的一貫性を備えたT2V生成のための新しい拡散モデルです。もし興味があれば、以下のリンクでこの技術について詳しく学ぶことができます。
UCバークレーとMeta AIの研究者らは、トラックレット上で3Dポーズとコンテキスト化された外観を融合することにより、ラグランジュアクション認識モデルを提案しています
流体力学では、ラグランジュ流体場形式とオイラー流体場形式を区別することが慣習となっています。Wikipediaによると、「流体場のラグランジュ仕様は、観察者が離散的な流体粒子を空間および時間を通じて流れるように追跡する方法であり、粒子の経路線は時間の経過に伴ってその位置をグラフ化することで決定できます。これは、舟に座って川を漂っているようなものです。一方、流体場のオイラー仕様は、時間が経過するにつれて流体が流れる空間の場所に特に重点を置いて流体運動を分析する方法です。川岸に立って流れる水を観察すると、これを想像することができます。 これらの考え方は、人間の行動の記録をどのように調べるかを理解する上で重要です。オイラーの視点によると、彼らは(x、y)または(x、y、z)など、特定の場所の特徴ベクトルに注目し、その場所で空間で静止したまま時間の経過を考慮します。一方、ラグランジュの視点によると、人間などのエンティティを時空間を超えて追跡し、関連する特徴ベクトルを追跡します。たとえば、活動認識の以前の研究は、しばしばラグランジュの視点を採用しました。ただし、3D時空間畳み込みに基づくニューラルネットワークの発展により、SlowFast Networksのような最先端の方法では、オイラーの視点が一般的になりました。トランスフォーマー・システムへの切り替え後も、オイラー視点が維持されています。 これは、トランスフォーマーのトークナイズ化プロセス中に、「ビデオ分析における単語の相当物は何であるべきか」という問いを再検討する機会を提供してくれます。Dosovitskiyらは、画像パッチを良い選択肢として推奨し、その概念をビデオに拡張すると、時空立方体がビデオに適している可能性があります。しかし、彼らは自分たちの研究で、人間の行動を調べる際にはラグランジュの視点を採用しています。これにより、彼らはエンティティの時間的な経過を考えています。この場合、エンティティは高レベルなものであるか、人間のようなもの、あるいはピクセルやパッチのような低レベルなものであるかもしれません。彼らは、「人間としてのエンティティ」のレベルで機能することを選択しました。これは、人間の行動を理解することに興味があるためです。 これを行うために、彼らは、人物の動きをビデオで分析し、それを利用して彼らの活動を識別する技術を使用しています。最近リリースされた3D追跡技術PHALPとHMR 2.0を使用してこれらの軌跡を取得することができます。図1は、PHALPが個人のトラックを3Dに昇格させることでビデオから人のトラックを回収する方法を示しています。彼らはこれらの人物の3Dポーズと位置を基本要素として各トークンを構築することができます。これにより、モデル(この場合、トランスフォーマー)は、身元、3D姿勢、3D位置にアクセスできる様々な個人に属するトークンを入力として受け取る柔軟なシステムを構築することができます。シナリオ内の人物の3D位置を使用することで、人間の相互作用について学ぶことができます。 トークナイズベースのモデルは、ポーズデータにアクセスできる旧来のベースラインを上回り、3Dトラッキングを使用することができます。人物の位置の進化は強力な信号ですが、一部の活動には周囲の環境や人物の見た目に関する追加の背景知識が必要です。そのため、立場と直接的に派生した人物とシーンの外観に関するデータを組み合わせることが重要です。これを行うために、彼らは、ラグランジュの枠組みで、人物と環境の文脈化された外観に基づく補足データを供給するために、最先端のアクション認識モデルを追加で使用しています。彼らは、各トラックのルートを激しく実行することで、各トラック周辺の文脈化された外観属性を記録します。 図1は、次のようになります。与えられた映画で、まず追跡アルゴリズム(PHALPなど)を使用して各個人を追跡します。次に、トラック内の各検出をトークナイズ化して、人間中心のベクトル(姿勢や外観など)を表現します。人物の推定3D位置とSMPLパラメータを使用して、彼らの3Dポーズを表現し、MViT(MaskFeatで事前学習された)特性を使用して、文脈化された外観を表現します。そして、レールを利用して、トランスフォーマー・ネットワークをトレーニングしてアクションを予測します。青い人物は2番目のフレームで検出されていません。これらの場所では、欠落した検出を置き換えるためにマスクトークンが渡されます。 彼らのトークンは、アクション認識バックボーンによって処理され、個人の3Dスタンスに関する明示的な情報と、ピクセルからの高頻度の外観データを含んでいます。AVA v2.2の難しいデータセットでは、彼らのシステム全体が先行研究を2.8 mAPの大幅なマージンで超えています。全体的に、彼らの主要な貢献は、人間の動きを理解するためにトラッキングと3Dポーズの利点を強調する方法論の導入です。UCバークレーとMeta AIの研究者は、人々のトラックを使用して彼らの行動を予測するLagrangian Action Recognition with Tracking(LART)メソッドを提案しています。彼らのベースラインバージョンは、トラックレスの軌跡とビデオ内の人物の3Dポーズ表現を使用した以前のベースラインを上回っています。さらに、ビデオからの外観とコンテキストを単独で考慮する標準的なベースラインが、提案されたLagrangian視点のアクション検出と簡単に統合でき、主流のパラダイムを大幅に改善できることを示しています。
CoDiに会おう:任意対任意合成のための新しいクロスモーダル拡散モデル
ここ数年、テキストからテキスト、画像、音声など、別の情報を生成する堅牢なクロスモーダルモデルが注目されています。注目すべき例としては、入力プロンプトによって期待される結果を説明することで、素晴らしい画像を生成できるStable Diffusionがあります。 実際にリアルな結果を出すにもかかわらず、これらのモデルは複数のモダリティが共存し相互作用する場合には実用上の制限があります。たとえば、「かわいい子犬が革製のソファで寝ている」というテキストの説明から画像を生成したいとしましょう。しかしそれだけでは不十分です。テキストから画像へのモデルから出力画像を受け取った後、子犬がソファで鼾をかいているという状況にどのような音がするかも聞きたいと思うでしょう。この場合、テキストまたは出力された画像を音に変換する別のモデルが必要になります。したがって、多数の特定の生成モデルをマルチステップの生成シナリオで接続することは可能ですが、このアプローチは手間がかかり遅くなる可能性があります。また、独立して生成された単一のストリームは、ビデオとオーディオを同期させるように、後処理的な方法で組み合わせた場合に一貫性とアラインメントが欠けることがあります。 包括的かつ多目的なany-to-anyモデルは、一貫したビデオ、オーディオ、およびテキストの説明を同時に生成し、全体的な体験を向上させ、必要な時間を減らすことができます。 この目標を達成するため、Composable Diffusion(CoDi)が開発され、任意のモダリティの組み合わせを同時に処理し生成することができるようになりました。 アーキテクチャの概要は以下に示されています。 https://arxiv.org/abs/2305.11846 任意のモダリティの混合物を処理し、さまざまな出力の組み合わせを柔軟に生成するモデルをトレーニングすることは、大きな計算量とデータ要件を必要とします。 これは、入力と出力のモダリティの可能性の指数関数的な成長に起因します。さらに、多数のモダリティグループの整列されたトレーニングデータを取得することは非常に限られており、存在しないため、すべての可能な入力-出力の組み合わせを使用してモデルをトレーニングすることは不可能です。この課題に対処するために、入力条件付けと生成散布ステップで複数のモダリティを整列させる戦略が提案されています。さらに、対照的な学習のための「ブリッジアライメント」戦略を導入することで、指数関数的な入力-出力の組み合わせを線形数のトレーニング目的で効率的にモデル化できます。 高品質な生成を維持し、任意の組み合わせを生成する能力を持ったモデルを実現するには、多様なデータリソースを活用した包括的なモデル設計とトレーニングアプローチが必要です。研究者たちは、CoDiを構築するために統合的なアプローチを採用しました。まず、テキスト、画像、ビデオ、音声など、各モダリティのために潜在的な散乱モデル(LDM)をトレーニングします。これらのLDMは、利用可能なモダリティ固有のトレーニングデータを使用して、各個別のモダリティの優れた生成品質を保証するために独立して並列にトレーニングできます。このデータには、1つ以上のモダリティを持つ入力と出力モダリティが含まれます。 音声や言語のプロンプトを使用して画像を生成するなど、モダリティの組み合わせが関わる条件付きクロスモダリティ生成の場合、入力モダリティは共有特徴空間に投影されます。このマルチモーダル調整メカニズムにより、特定の設定の直接トレーニングを必要とせずに、CoDiは任意のモダリティまたはモダリティの組み合わせに対して条件を付けることができます。出力LDMは、結合された入力特徴に注意を払い、クロスモダリティ生成を可能にします。このアプローチにより、CoDiはさまざまなモダリティの組み合わせを効果的に処理し、高品質な出力を生成することができます。 CoDiのトレーニングの第2段階は、多数の多対多生成戦略を処理できるモデルの能力を促進し、異なるLDMからの潜在変数を共有潜在空間に投影する環境エンコーダVと、各散布器にクロスアテンションモジュールを導入することで実現されます。現在の知識の範囲では、CoDiはこの能力を持つ最初のAIモデルとして立ち上がっています。 このステージでは、LDMのパラメーターは固定され、クロスアテンションパラメーターとVのみがトレーニングされます。環境エンコーダーが異なるモダリティの表現を整列させるため、LDMはVを使用して出力表現を補間することで、任意の共同生成モダリティのセットとクロスアテンドできます。このシームレスな統合により、CoDiは可能な生成組み合わせすべてでトレーニングする必要がなく、任意のモダリティの任意の組み合わせを生成できます。その結果、トレーニング目的の数は指数関数から線形関数に削減され、トレーニングプロセスの効率が大幅に向上します。 モデルによって生成されたいくつかの出力サンプルは、各生成タスクについて以下に報告されています。 https://arxiv.org/abs/2305.11846 これがCoDiの概要であり、最先端の品質を持つ任意の生成に対する効率的なクロスモーダル生成モデルです。興味がある場合は、以下のリンクでこの技術について詳しく学ぶことができます。
あなたのポケットにアーティストの相棒:SnapFusionは、拡散モデルのパワーをモバイルデバイスにもたらすAIアプローチです
拡散モデル。AI領域の進歩に注目している場合、この用語については多く聞いたことがあるでしょう。それらは生成型AI手法の革命を可能にした鍵でした。我々は今や、テキストプロンプトを使用して数秒で写真のような逼真的な画像を生成するモデルを持っています。それらは、コンテンツ生成、画像編集、スーパーレゾリューション、ビデオ合成、3Dアセット生成を革新しました。 しかし、この印象的なパフォーマンスには高いコンピューテーション要件が伴います。つまり、それらを完全に活用するには本当に高性能のGPUが必要です。はい、それらをローカルコンピュータで実行する試みもありますが、それでも高性能なものが必要です。一方、クラウドプロバイダを使用することも代替解決策となりますが、その場合はプライバシーを危険にさらす可能性があります。 そして、考えなければならないのは、移動中に使用することです。ほとんどの人々は、コンピュータよりもスマートフォンで時間を過ごしています。拡散モデルをモバイルデバイスで使用したい場合、デバイス自体の限られたハードウェアパワーにとって要求が高すぎるため、うまくいく可能性はほぼありません。 拡散モデルは次の大きな流行ですが、実用的なアプリケーションに適用する前にその複雑さに対処する必要があります。モバイルデバイスでの推論の高速化に焦点を当てた複数の試みが行われていますが、シームレスなユーザーエクスペリエンスや定量的な生成品質を達成していませんでした。それは今までの話であり、新しいプレイヤーがフィールドに登場しているのです。SnapFusionと名付けられたこのプレイヤーです。 SnapFusionは、モバイルデバイスで2秒以下で画像を生成する最初のテキストから画像への拡散モデルです。UNetアーキテクチャを最適化し、ノイズ除去ステップ数を減らすことで推論速度を向上させています。さらに、進化するトレーニングフレームワークを使用し、データ蒸留パイプラインを導入し、ステップ蒸留中に学習目標を強化しています。 SnapFusionの概要。出典:https://arxiv.org/pdf/2306.00980.pdf SnapFusionの構造に変更を加える前に、SD-v1.5のアーキテクチャの冗長性を調査して、効率的なニューラルネットワークを得ることが最初に行われました。しかし、SDに従来のプルーニングやアーキテクチャサーチ技術を適用することは、高いトレーニングコストのために困難でした。アーキテクチャの変更は性能の低下につながる可能性があり、大規模な計算リソースを必要とする厳密な微調整が必要となります。そのため、その道は閉ざされ、彼らは、事前にトレーニングされたUNetモデルのパフォーマンスを維持しながら効果を徐々に向上させる代替方法を開発する必要がありました。 推論速度を向上させるために、SnapFusionは、条件付き拡散モデルのボトルネックであるUNetアーキテクチャを最適化することに焦点を当てています。既存の作品は主にトレーニング後の最適化に焦点を当てていますが、SnapFusionはアーキテクチャの冗長性を特定し、元のStable Diffusionモデルを上回る進化するトレーニングフレームワークを提案することで、推論速度を大幅に向上させています。また、イメージデコーダーを圧縮して高速化するためのデータ蒸留パイプラインを導入しています。 SnapFusionには、各クロスアテンションとResNetブロックを一定の確率で実行する確率的フォワード伝播が適用される堅牢なトレーニングフェーズが含まれています。この堅牢なトレーニング拡張機能により、ネットワークがアーキテクチャの変化に対して耐性があることが保証され、各ブロックの正確な評価と安定したアーキテクチャの進化が可能になります。 効率的なイメージデコーダーは、チャネル削減によって得られたデコーダーを使用して合成データを使用して蒸留パイプラインを介して達成されます。この圧縮デコーダは、SD-v1.5のものよりもはるかに少ないパラメータを持ち、より速くなっています。蒸留プロセスには、テキストプロンプトを使用してSD-v1.5のUNetから潜在表現を取得することで、効率的なデコーダーから1つ、SD-v1.5から1つの画像を生成することが含まれます。 提案されたステップ蒸留アプローチには、バニラ蒸留損失目的が含まれており、これは、生徒のUNetの予測と教師のUNetのノイズのある潜在表現との不一致を最小化することを目的としています。さらに、CFG-aware蒸留損失目的が導入され、CLIPスコアを改善します。CFGガイドされた予測は、教師モデルと生徒モデルの両方で使用され、CFGスケールはトレーニング中にFIDスコアとCLIPスコアのトレードオフを提供するためにランダムにサンプリングされます。 SnapFusionによって生成されたサンプル画像。出典: https://arxiv.org/pdf/2306.00980.pdf 改善されたステップ蒸留とネットワークアーキテクチャの開発のおかげで、SnapFusionは、モバイルデバイス上のテキストプロンプトから512×512の画像を2秒未満で生成することができます。生成された画像は、最先端のStable Diffusionモデルと同様の品質を示しています。
MeLoDyとは:音楽合成のための効率的なテキストからオーディオへの拡散モデル
音楽は、調和、メロディ、リズムから成る芸術であり、人生のあらゆる面に浸透しています。深層生成モデルの発展に伴い、音楽生成は近年注目を集めています。言語モデル(LM)は、長期的な文脈にわたる複雑な関係をモデリングする能力において、顕著なクラスの生成モデルとして、音声合成にLMを成功裏に応用することができるAudioLMやその後の作品が登場しています。DPM(拡散確率モデル)は、生成モデルのもう1つの競争力のあるクラスとして、音声、音楽の合成に優れた能力を発揮しています。 しかし、自由形式のテキストから音楽を生成することは依然として課題であり、許容される音楽の記述が多様で、ジャンル、楽器、テンポ、シナリオ、あるいは主観的な感情に関連していることがあります。 従来のテキストから音楽を生成するモデルは、しばしば音声の継続や高速サンプリングなど特定の特性に焦点を当て、一部のモデルは音楽プロデューサーなどの専門家によって実施される堅牢なテストを優先しています。さらに、ほとんどのモデルは大規模な音楽データセットでトレーニングされ、高い忠実度とテキストプロンプトのさまざまな側面への遵守とともに、最先端の生成性能を示しています。 しかし、MusicLMやNoise2Musicなどのこれらの手法の成功は、実用性に重大な影響を与える高い計算コストと引き換えに得られています。比較的、DPMに基づく他の手法は、高品質な音楽の効率的なサンプリングを実現しました。しかしながら、彼らが示したケースは比較的小さく、サンプリング効果が制限されていました。実現可能な音楽作成ツールを目指すにあたり、生成モデルの高い効率性は、人間のフィードバックを考慮に入れたインタラクティブな作成を促進するために不可欠です。 LMとDPMの両方が有望な結果を示しているにもかかわらず、関連する問題は、どちらを好むかではなく、両方の方法の利点を同時に活用できるかどうかです。 上記の動機に基づき、MeLoDyと呼ばれるアプローチが開発されました。戦略の概要は、以下の図に示されています。 MusicLMの成功を分析した後、著者たちは、MusicLMの最高レベルのLMである「意味LM」を活用して、メロディ、リズム、ダイナミクス、音色、テンポの全体的なアレンジメントを決定する音楽の意味構造をモデリングします。この意味LMに条件付けられた上で、非自己回帰性のDPMを活用して、成功したサンプリングの加速技術を用いて、音響を効率的かつ効果的にモデリングします。 さらに、著者たちは、古典的な拡散プロセスを採用する代わりに、デュアルパス拡散(DPD)モデルを提案しています。実際、生データで作業することは、計算費用を指数関数的に増加させることになります。提案された解決策は、生データを低次元の潜在表現に縮小することです。データの次元を減らすことで、操作に対するその影響を阻害し、したがって、モデルの実行時間を短縮することができます。その後、生データは、事前にトレーニングされたオートエンコーダを介して、潜在表現から再構築されることができます。 モデルによって生成されたいくつかの出力サンプルは、以下のリンクから入手できます:https://efficient-melody.github.io/。コードはまだ利用可能ではないため、現時点ではオンラインまたはローカルで試すことはできません。 これは、最先端の品質の音楽オーディオを生成する効率的なLMガイド拡散モデルであるMeLoDyの概要でした。興味がある場合は、以下のリンクでこの技術について詳しく学ぶことができます。
類似検索、パート5:局所性鋭敏ハッシュ(LSH)
類似度検索とは、クエリが与えられたときに、データベース内のすべてのドキュメントの中から、それに最も類似したドキュメントを見つけることを目的とした問題ですデータサイエンスにおいては、類似度検索はしばしば自然言語処理において現れます...
チャットGPTの潜在能力を引き出すためのプロンプトエンジニアリングのマスタリング
プロンプトエンジニアリングは、ChatGPTやその他の大規模言語モデルのおかげで、風のように私たちの生活の一部にすぐになりました完全に新しい分野ではありませんが、現在...
紛争のトレンドとパターンの探索:マニプールのACLEDデータ分析
はじめに データ分析と可視化は、複雑なデータセットを理解し、洞察を効果的に伝えるための強力なツールです。この現実世界の紛争データを深く掘り下げる没入型探索では、紛争の厳しい現実と複雑さに深く踏み込みます。焦点は、長期にわたる暴力と不安定状態によって悲惨な状況に陥ったインド北東部のマニプール州にあります。私たちは、武装紛争ロケーション&イベントデータプロジェクト(ACLED)データセット[1]を使用し、紛争の多面的な性質を明らかにするための詳細なデータ分析の旅に出ます。 学習目標 ACLEDデータセットのデータ分析技術に熟達する。 効果的なデータ可視化のスキルを開発する。 脆弱な人口に対する暴力の影響を理解する。 紛争の時間的および空間的な側面に関する洞察を得る。 人道的ニーズに対処するための根拠に基づくアプローチを支援する。 この記事は、データサイエンスブログマラソンの一環として公開されました。 利害の衝突 このブログで提示された分析と解釈に責任を持つ特定の組織や団体はありません。目的は、紛争分析におけるデータサイエンスの潜在力を紹介することです。さらに、これらの調査結果には個人的な利益や偏見が含まれておらず、紛争のダイナミクスを客観的に理解するアプローチが確保されています。データ駆動型の方法を促進し、紛争分析に関する広範な議論に情報を提供するために、積極的に利用することを推奨します。 実装 なぜACLEDデータセットを使用するのか? ACLEDデータセットを活用することで、データサイエンス技術の力を活用することができます。これにより、マニプール州の状況を理解するだけでなく、暴力に関連する人道的側面にも光を当てることができます。ACLEDコードブックは、このデータセット[2]で使用されるコーディングスキームと変数に関する詳細な情報を提供する包括的な参考資料です。 ACLEDの重要性は、共感的なデータ分析にあります。これにより、マニプール州の暴力に関する理解が深まり、人道的ニーズが明らかにされ、暴力の解決と軽減に貢献します。これにより、影響を受けるコミュニティに平和で包摂的な未来が促進されます。 このデータ駆動型の分析により、貴重な洞察力を得るだけでなく、マニプール州の暴力の人的コストにも光が当てられます。ACLEDデータを精査することで、市民人口、強制的移動、必要なサービスへのアクセスなど、地域で直面する人道的現実の包括的な描写が可能になります。 紛争のイベント まず、ACLEDデータセットを使用して、マニプール州の紛争のイベントを調査します。以下のコードスニペットは、インドのACLEDデータセットを読み込み、マニプール州のデータをフィルタリングして、形状が(行数、列数)のフィルタリングされたデータセットを生成します。フィルタリングされたデータの形状を出力します。 import pandas as pd # ACLEDデータをダウンロードして国別のcsvをインポートする…
AIの未来を形作る ビジョン・ランゲージ・プリトレーニング・モデルの包括的な調査と、ユニモーダルおよびマルチモーダルタスクにおける役割
機械学習研究の最新リリースで、ビジョン言語事前学習(VLP)とその多様なタスクへの応用について、研究チームが深く掘り下げています。この論文は、単一モーダルトレーニングのアイデアを探究し、それがマルチモーダル適応とどのように異なるかを説明しています。そして、VLPの5つの重要な領域である特徴抽出、モデルアーキテクチャ、事前トレーニング目標、事前トレーニングデータセット、およびダウンストリームタスクを示しています。研究者たちは、既存のVLPモデルとその異なる側面での適応をレビューしています。 人工知能の分野は常に、モデルを人間と同じように知覚、思考、そしてパターンや微妙なニュアンスを理解する方法でトレーニングしようとしてきました。ビジュアル、オーディオ、テキストなど、可能な限り多くのデータ入力フィールドを組み込もうとする試みがいくつか行われてきました。ただし、これらのアプローチのほとんどは、単一モーダル意味で「理解」の問題を解決しようとしたものです。 単一モーダルアプローチは、1つの側面のみを評価するアプローチであり、例えばビデオの場合、音声またはトランスクリプトに焦点を絞っており、マルチモーダルアプローチでは、可能な限り多くの利用可能な特徴をターゲットにしてモデルに組み込もうとします。たとえば、ビデオを分析する際に、音声、トランスクリプト、スピーカーの表情をとらえて、文脈を本当に「理解」することができます。 マルチモーダルアプローチは、リソースが豊富であり、訓練に必要な大量のラベル付きデータを取得することが困難であるため、課題があります。Transformer構造に基づく事前トレーニングモデルは、自己教師あり学習と追加タスクを活用して、大規模な非ラベルデータからユニバーサルな表現を学習することで、この問題に対処しています。 NLPのBERTから始まり、単一モーダルの方法でモデルを事前トレーニングすることで、限られたラベル付きデータでダウンストリームタスクを微調整することができることが示されています。研究者たちは、同じ設計哲学をマルチモーダル分野に拡張することで、ビジョン言語事前学習(VLP)の有効性を探究しました。VLPは、大規模なデータセットで事前トレーニングモデルを使用して、モダリティ間の意味的な対応関係を学習します。 研究者たちは、VLPアプローチの進歩について、5つの主要な領域を検討しています。まず、VLPモデルが画像、ビデオ、テキストを前処理して表現する方法、使用されるさまざまなモデルを強調して説明しています。次に、単一ストリームの観点とその使用可能性、デュアルストリームフュージョンとエンコーダのみ対エンコーダデコーダ設計の観点を探究しています。 論文では、VLPモデルの事前トレーニングについてさらに探求し、完了、マッチング、特定のタイプに分類しています。これらの目標は、ユニバーサルなビジョン言語表現を定義するのに役立ちます。研究者たちは、2つの主要な事前トレーニングデータセットのカテゴリである画像言語モデルとビデオ言語モデルについて概説しました。論文では、マルチモーダルアプローチが文脈を理解し、より適切にマッピングされたコンテンツを生成するためにどのように役立つかを強調しています。最後に、記事は、事前トレーニングモデルの有効性を評価する上での重要性を強調しながら、VLPのダウンストリームタスクの目標と詳細を提示しています。 https://link.springer.com/content/pdf/10.1007/s11633-022-1369-5.pdf https://link.springer.com/content/pdf/10.1007/s11633-022-1369-5.pdf この論文では、SOTA(State-of-the-Art)のVLPモデルについて詳細な概要が提供されています。これらのモデルをリストアップし、その主要な特徴やパフォーマンスを強調しています。言及されているモデルは、最先端の技術開発の堅固な基盤であり、将来の開発のベンチマークとして役立ちます。 研究論文に基づくと、VLPアーキテクチャの将来は有望で信頼性があります。彼らは、音響情報の統合、知識と認知学習、プロンプトチューニング、モデル圧縮と加速、およびドメイン外の事前学習など、様々な改善の領域を提案しています。これらの改善領域は、新しい研究者たちがVLPの分野で前進し、画期的なアプローチを打ち出すためにインスピレーションを与えることを目的としています。
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.