Learn more about Search Results the Hub - Page 157

CVPR 2023におけるGoogle

Googleのプログラムマネージャー、Shaina Mehtaが投稿しました 今週は、バンクーバーで開催される最も重要なコンピュータビジョンとパターン認識の年次会議であるCVPR 2023の始まりを迎えます(追加のバーチャルコンテンツもあります)。Google Researchはコンピュータビジョンの研究のリーダーであり、プラチナスポンサーであり、メインカンファレンスで約90の論文が発表され、40以上のカンファレンスワークショップやチュートリアルに積極的に参加しています。 今年のCVPRに参加する場合は、是非、ブースに立ち寄って、最新のマシンパーセプションの様々な分野に応用するための技術を積極的に探求している研究者とお話ししてください。弊社の研究者は、MediaPipeを使用したオンデバイスのMLアプリケーション、差分プライバシーの戦略、ニューラル輝度場技術など、いくつかの最近の取り組みについても話し、デモを行います。 以下のリストでCVPR 2023で発表される弊社の研究についても詳しくご覧いただけます(Googleの所属は太字で表示されています)。 理事会と組織委員会 シニアエリアチェアには、Cordelia Schmid、Ming-Hsuan Yangが含まれます。 エリアチェアには、Andre Araujo、Anurag Arnab、Rodrigo Benenson、Ayan Chakrabarti、Huiwen Chang、Alireza Fathi、Vittorio Ferrari、Golnaz Ghiasi、Boqing Gong、Yedid Hoshen、Varun Jampani、Lu…

より小さい相手による言語モデルからの知識蒸留に深く潜入する:MINILLMによるAIのポテンシャルの解放

大規模言語モデルの急速な発展による過剰な計算リソースの需要を減らすために、大きな先生モデルの監督の下で小さな学生モデルを訓練する知識蒸留は、典型的な戦略です。よく使われる2つのKDは、先生の予測のみにアクセスするブラックボックスKDと、先生のパラメータを使用するホワイトボックスKDです。最近、ブラックボックスKDは、LLM APIによって生成されたプロンプト-レスポンスペアで小さなモデルを最適化することで、励ましを示しています。オープンソースのLLMが開発されるにつれて、ホワイトボックスKDは、研究コミュニティや産業セクターにとってますます有用になります。なぜなら、学生モデルはホワイトボックスのインストラクターモデルからより良いシグナルを得るため、性能が向上する可能性があるためです。 生成的LLMのホワイトボックスKDはまだ調査されていませんが、小規模(1Bパラメータ)の言語理解モデルについては、主にホワイトボックスKDが調査されています。この論文では、彼らはLLMのホワイトボックスKDを調べています。彼らは、一般的なKDが課題を生成的に実行するLLMにとってより優れている可能性があると主張しています。シーケンスレベルモデルのいくつかの変種を含む標準的なKD目標は、教師と学生の分布の近似前方クルバック・ライブラー発散(KLD)を最小化し、KLとして知られています。教師分布p(y|x)と学生分布q(y|x)によってパラメータ化され、pがqのすべてのモードをカバーするように強制する。出力空間が有限の数のクラスを含むため、テキスト分類問題においてKLはよく機能します。したがって、p(y|x)とq(y|x)の両方に少数のモードがあることが保証されます。 しかし、出力空間がはるかに複雑なオープンテキスト生成問題では、p(y|x)はq(y|x)よりもはるかに広い範囲のモードを表す場合があります。フリーラン生成中、前方KLDの最小化は、qがpの空白領域に過剰な確率を与え、pの下で非常にありそうもないサンプルを生成することにつながる可能性があります。この問題を解決するために、コンピュータビジョンや強化学習で一般的に使用される逆KLD、KLを最小化することを提案しています。パイロット実験は、KLを過小評価することで、qがpの主要なモードを探し、空いている領域を低い確率で与えるように駆動することを示しています。 これは、LLMの言語生成において、学生モデルがインストラクター分布の長いテールバージョンを学習しすぎず、誠実さと信頼性が必要な実世界の状況で重要な応答の正確性に集中することを意味します。彼らは、ポリシーグラディエントで目標の勾配を生成してmin KLを最適化します。最近の研究では、PLMの最適化にポリシーオプティマイゼーションの効果が示されています。ただし、モデルのトレーニングはまだ過剰な変動、報酬のハッキング、および世代の長さのバイアスに苦しんでいることがわかりました。そのため、彼らは以下を含めます。 バリエーションを減らすための単一ステップの正則化。 報酬のハッキングを減らすためのティーチャー混合サンプリング。 長さのバイアスを減らすための長さ正規化。  広範なNLPタスクを含む指示に従う設定では、The CoAI Group、清華大学、Microsoft Researchの研究者は、MINILLMと呼ばれる新しい技術を提供し、パラメータサイズが120Mから13Bまでのいくつかの生成言語モデルに適用します。5つの指示に従うデータセットと評価のためのRouge-LおよびGPT-4フィードバックを使用します。彼らのテストは、MINILMがすべてのデータセットでベースラインの標準KDモデルを常に打ち負かすことを示しています(図1を参照)。さらに研究により、MINILLMは、より多様な長い返信を生成するのに適しており、露出バイアスが低く、キャリブレーションが向上していることがわかりました。モデルはGitHubで利用可能です。 図1は、MINILLMとシーケンスレベルKD(SeqKD)の評価セットでの平均GPT-4フィードバックスコアの比較を示しています。左側にはGPT-2-1.5Bがあり、生徒としてGPT-2 125M、340M、および760Mが動作します。中央には、GPT-2 760M、1.5B、およびGPT-Neo 2.7Bが生徒であり、GPT-J 6Bがインストラクターです。右側にはOPT 13Bがあり、生徒としてOPT 1.3B、2.7B、および6.7Bが動作しています。

グループ化および空間計量データの混合効果機械学習におけるGPBoost

GPBoostを用いたグループ化されたおよび地域空間計量データの混合効果機械学習 - ヨーロッパのGDPデータを用いたデモ

PythonからJuliaへ:基本的なデータ操作とEDA

統計計算の領域でエマージングなプログラミング言語として、Julia は近年ますます注目を集めています他の言語に優る2つの特徴があります...

LlamaIndex インデックスと検索のための究極のLLMフレームワーク

LlamaIndex(以前はGPT Indexとして知られていました)は、データ取り込みを容易にする必須ツールを提供することで、LLMを使用したアプリケーションの構築を支援する注目すべきデータフレームワークです

METAのHiera:複雑さを減らして精度を高める

畳み込みニューラルネットワークは、20年以上にわたってコンピュータビジョンの分野を支配してきましたトランスフォーマーの登場により、それらは放棄されると考えられていましたしかし、多くの実践者は…

dtreevizを使用して、信じられないほどの意思決定木の視覚化を作成する

決定木モデルを視覚化できることは、モデルの説明可能性にとって重要であり、ステークホルダーがこれらのモデルに信頼を持つのに役立つことがあります

超幾何分布の理解

二項分布は、データサイエンスの内外でよく知られた分布ですしかし、あなたはその人気のないいところのいとこである超幾何分布について聞いたことがありますか?もしそうでない場合、この投稿をご覧ください...

予測の作成:Pythonにおける線形回帰の初心者ガイド

最も人気のある機械学習アルゴリズムである線形回帰について、その数学的直感とPythonによる実装をすべて学びましょう

PDFの変換:PythonにおけるTransformerを用いた情報の要約化

はじめに トランスフォーマーは、単語の関係を捉えることにより正確なテキスト表現を提供し、自然言語処理を革新しています。PDFから重要な情報を抽出することは今日不可欠であり、トランスフォーマーはPDF要約の自動化に効率的な解決策を提供します。トランスフォーマーの適応性により、これらのモデルは法律、金融、学術などのさまざまなドキュメント形式を扱うのに貴重なものになっています。この記事では、トランスフォーマーを使用したPDF要約を紹介するPythonプロジェクトを紹介します。このガイドに従うことで、読者はこれらのモデルの変革的な可能性を活かし、広範なPDFから洞察を得ることができます。自動化されたドキュメント分析のためにトランスフォーマーの力を活用し、効率的な旅に乗り出しましょう。 学習目標 このプロジェクトでは、読者は以下の学習目標に沿った重要なスキルを身につけることができます。 トランスフォーマーの複雑な操作を深く理解し、テキスト要約などの自然言語処理タスクの取り組み方を革新する。 PyPDF2などの高度なPythonライブラリを使用してPDFのパースとテキスト抽出を行う方法を学び、さまざまなフォーマットとレイアウトの扱いに関する複雑さに対処する。 トークン化、ストップワードの削除、ユニークな文字やフォーマットの複雑さに対処するなど、テキスト要約の品質を向上させるための必須の前処理技術に精通する。 T5などの事前学習済みトランスフォーマーモデルを使用して、高度なテキスト要約技術を適用することで、トランスフォーマーの力を引き出す。PDFドキュメントの抽出的要約に対応する実践的な経験を得る。 この記事はData Science Blogathonの一部として公開されました。 プロジェクトの説明 このプロジェクトでは、Pythonトランスフォーマーの可能性を活かして、PDFファイルの自動要約を実現することを目的としています。PDFから重要な詳細を抽出し、手動分析の手間を軽減することを目指しています。トランスフォーマーを使用してテキスト要約を行うことで、文書分析を迅速化し、効率性と生産性を高めることを目指しています。事前学習済みのトランスフォーマーモデルを実装することで、PDFドキュメント内の重要な情報を簡潔な要約にまとめることを目指しています。トランスフォーマーを使用して、プロジェクトでPDF要約を合理化するための専門知識を提供することがプロジェクトの目的です。 問題の説明 PDFドキュメントから重要な情報を抽出するために必要な時間と人的労力を最小限に抑えることは、大きな障壁です。長いPDFを手動で要約することは、手間のかかる作業であり、人的ミスによる限界と、膨大なテキストデータを扱う能力の限界があります。これらの障壁は、PDFが多数存在する場合には効率性と生産性を著しく阻害します。 トランスフォーマーを使用してこのプロセスを自動化する重要性は過小評価できません。トランスフォーマーの変革的な能力を活用することで、PDFドキュメントから重要な洞察、注目すべき発見、重要な議論を包括する重要な詳細を自律的に抽出することができます。トランスフォーマーの展開により、要約ワークフローが最適化され、人的介入が軽減され、重要な情報の取得が迅速化されます。この自動化により、異なるドメインの専門家が迅速かつ適切な意思決定を行い、最新の研究に精通し、PDFドキュメントの膨大な情報を効果的にナビゲートできるようになります。 アプローチ このプロジェクトにおける私たちの革新的なアプローチは、トランスフォーマーを使用してPDFドキュメントを要約することです。私たちは、完全に新しい文を生成するのではなく、元のテキストから重要な情報を抽出する抽出的テキスト要約に重点を置くことにします。これは、PDFから抽出された重要な詳細を簡潔かつ分かりやすくまとめることがプロジェクトの目的に合致しています。 このアプローチを実現するために、以下のように進めます。 PDFのパースとテキスト抽出: PyPDF2ライブラリを使用してPDFファイルをナビゲートし、各ページからテキストコンテンツを抽出します。抽出されたテキストは、後続の処理のために細心の注意を払ってコンパイルされます。 テキストエンコードと要約: transformersライブラリを使用して、T5ForConditionalGenerationモデルの力を利用します。事前に学習された能力を持つこのモデルは、テキスト生成タスクにとって重要な役割を果たします。モデルとトークナイザを初期化し、T5トークナイザを使用して抽出されたテキストをエンコードし、後続のステップで適切な表現を確保します。 要約の生成:…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us