Learn more about Search Results 調査 - Page 154
- You may be interested
- 「アジア競技大会、eスポーツがオリンピッ...
- OpenAIとLangChainによるMLエンジニアリン...
- アリババの研究者は、Qwen-VLシリーズを紹...
- Pythonを使用して地理的な巡回セールスマ...
- 「プラットプス:データセットのキュレー...
- 「言語モデルの微調整を革命化する:NEFTu...
- トップ投稿 7月31日〜8月6日:ChatGPTを忘...
- 「Amazon SageMakerを使用して、生成AIを...
- ミストラルAI (8x7b)、専門家(MoE)モデ...
- 🤗 Transformersを使用して、画像分類のた...
- ダブルマシンラーニングの簡略化:パート1...
- 「Apple M1とM2のパフォーマンス- SSLモデ...
- 2023年9月にチェックすべき40以上のクール...
- 「AI駆動の洞察:LangChainとPineconeを活...
- 「人工知能と自由意志」
AgentGPT ブラウザ内の自律型AIエージェント
あなたのAIエージェントに名前と目標を与え、割り当てられた目的を達成するのを見てください
AWSが開発した目的に特化したアクセラレータを使用することで、機械学習ワークロードのエネルギー消費を最大90%削減できます
従来、機械学習(ML)エンジニアは、モデルの学習と展開コストとパフォーマンスのバランスを取ることに焦点を当ててきました最近では、持続可能性(エネルギー効率)が顧客にとって追加の目標となっていますこれは重要なことであり、MLモデルのトレーニングを行い、トレーニングされたモデルを使用して予測(推論)を行うことは、非常にエネルギーを消費するタスクであるためです加えて、さらに...
20以上のスタートアップに最適なAIツール(2023年)
AIによって、職場の創造性、分析、意思決定が革命化されています。現在、人工知能の能力は、企業が拡大を急ぎ、内部プロセスをより良く管理するための絶大な機会を提供しています。人工知能の応用は、自動化や予測分析からパーソナライゼーションやコンテンツ開発まで多岐にわたります。以下は、若いビジネスに有利に働く最高の人工知能ツールの概要です。 AdCreative.ai AdCreative.aiは究極の人工知能ソリューションで、広告やソーシャルメディアのゲームを強化します。創造的な作業に数時間費やす必要がなく、数秒で生成される高変換率の広告やソーシャルメディア投稿に別れを告げましょう。今すぐAdCreative.aiで成功を最大化し、努力を最小限に抑えましょう。 DALL·E 2 OpenAIのDALLE 2は、単一のテキスト入力から独自かつ創造的なビジュアルを作成する最先端のAIアートジェネレーターです。AIモデルは、画像とテキストの説明の巨大なデータセットでトレーニングされており、書かれたリクエストに応じて詳細で視覚的に魅力的な画像を生成します。スタートアップはDALLE 2を使用して広告やウェブサイト、ソーシャルメディアページの画像を作成し、手動でグラフィックを作成する必要がなく、テキストから異なる画像を生成するこの方法で時間とお金を節約することができます。 Otter AI Otter.AIは人工知能を使用して、共有可能で検索可能、アクセス可能、安全なミーティングノートのリアルタイムトランスクリプションをユーザーに提供します。音声を記録し、ノートを書き、自動的にスライドをキャプチャし、要約を生成するミーティングアシスタントを手に入れましょう。 Notion Notionは、最新のAI技術を活用してユーザー数を増やすことを目指しています。最新機能であるNotion AIは、ノートの要約、ミーティングでのアクションアイテムの識別、テキストの作成と修正などのタスクをサポートする堅牢な生成AIツールです。 Notion AIは、煩雑なタスクを自動化し、ユーザーに提案やテンプレートを提供することで、ワークフローを合理化し、ユーザーエクスペリエンスを最適化することで、最終的に簡単で改善された体験を提供します。 Motion Motionは、ミーティング、タスク、プロジェクトを考慮した日々のスケジュールを作成するためにAIを使用する賢いツールです。計画の手間を省いて、より生産的な人生に別れを告げましょう。 Jasper 先進的なAIコンテンツジェネレーターであるJasperは、その優れたコンテンツ製作機能でクリエイティブ業界で話題となっています。Jasperは、人間のライティングパターンを認識することから効率性が生まれ、グループが興味深いコンテンツを迅速に製作することができます。ランディングページや製品説明のコピーをより良く書くためにJasperをAIパワードのコンパニオンとして使用し、より魅力的で興味深いソーシャルメディア投稿を作成することができます。 Lavender リアルタイムAIメールコーチであるLavenderは、セールス業界でゲームチェンジャーとして広く認知されており、数千人のSDRs、AEs、およびマネージャーがメールのレスポンス率と生産性を向上させています。競争力のあるセールス環境では、効果的なコミュニケーションスキルが成功に不可欠です。スタートアップはLavenderを使用して、電子メールのレスポンス率を向上させ、見込み客とのより深い関係を構築することができます。 Speak AI…
作曲家:AIツールを使った投資の学び方
もし投資の世界について理解することが苦手なら、Composer(AI投資ツール)があなたの解決策かもしれません
構造方程式モデリングにおける複数グループ分析
複数群分析(Multiple-group analysis、MGA)は、研究者が構造の指定を可能にすることにより、人口統計セグメントやサブポピュレーション間の違いを調査するための統計技術です
一度言えば十分です!単語の繰り返しはAIの向上に役立ちません
大規模言語モデル(LLM)はその能力を示し、世界中で話題になっています今や、すべての大手企業は洒落た名前を持つモデルを持っていますしかし、その裏にはすべてトランスフォーマーが動いています...
データサイエンティストのための必須ガイド:探索的データ分析
データを完全に理解するためのベストプラクティス、技術、ツール
AIフロンティアシリーズ:人材
私が初めて参加した「多業種のブレストセッション」から約3年が経ち、かつて野心的だと考えられていた機械学習の概念が、今では人事部門でも実現可能になっていることに驚かされています...
フロントエンド開発のトレンド
最先端の進歩や最高水準のイノベーションが、現在ウェブ開発の世界を形作っている様子について、私たちと一緒に深く掘り下げてみませんか
SRGANs:低解像度と高解像度画像のギャップを埋める
イントロダクション あなたが古い家族の写真アルバムをほこりっぽい屋根裏部屋で見つけるシナリオを想像してください。あなたはすぐにほこりを取り、最も興奮してページをめくるでしょう。そして、多くの年月前の写真を見つけました。しかし、それでも、あなたは幸せではないです。なぜなら、写真が薄く、ぼやけているからです。写真の顔や細部を見つけるために目をこらします。これは昔のシナリオです。現代の新しいテクノロジーのおかげで、私たちはスーパーレゾリューション・ジェネレーティブ・アドバーサリ・ネットワーク(SRGAN)を使用して、低解像度の画像を高解像度の画像に変換することができます。この記事では、私たちはSRGANについて最も学び、QRコードの強化のために実装します。 出典: Vecteezy 学習目標 この記事では、以下のことを学びます: スーパーレゾリューションと通常のズームとの違いについて スーパーレゾリューションのアプローチとそのタイプについて SRGAN、その損失関数、アーキテクチャ、およびそのアプリケーションについて深く掘り下げる SRGANを使用したQRエンハンスメントの実装とその詳細な説明 この記事は、データサイエンスブログマラソンの一環として公開されました。 スーパーレゾリューションとは何ですか? 多くの犯罪捜査映画では、証拠を求めて探偵がCCTV映像をチェックする典型的なシナリオがよくあります。そして、ぼやけた小さな画像を見つけて、ズームして強化してはっきりした画像を得るシーンがあります。それは可能ですか?はい、スーパーレゾリューションの助けを借りて、それはできます。スーパーレゾリューション技術は、CCTVカメラによってキャプチャされたぼやけた画像を強化し、より詳細な視覚効果を提供することができます。 ………………………………………………………………………………………………………………………………………………………….. ………………………………………………………………………………………………………………………………………………………….. 画像の拡大と強化のプロセスをスーパーレゾリューションと呼びます。それは、対応する低解像度の入力から画像またはビデオの高解像度バージョンを生成することを目的としています。それによって、欠落している詳細を回復し、鮮明さを向上させ、視覚的品質を向上させることができます。強化せずに画像をズームインするだけでは、以下の画像のようにぼやけた画像が得られます。強化はスーパーレゾリューションによって実現されます。写真、監視システム、医療画像、衛星画像など、さまざまな領域で多くの応用があります。 ……….. スーパーレゾリューションの従来のアプローチ 従来のアプローチでは、欠落しているピクセル値を推定し、画像の解像度を向上させることに重点を置いています。2つのアプローチがあります。補間ベースの方法と正則化ベースの方法です。 補間ベースの方法 スーパーレゾリューションの初期の日々には、補間ベースの方法に重点が置かれ、欠落しているピクセル値を推定し、その後画像を拡大します。隣接するピクセル値が類似しているという仮定を使用して、これらの値を使用して欠落している値を推定します。最も一般的に使用される補間方法には、バイキュービック、バイリニア、および最近傍補間があります。しかし、その結果は満足できないものでした。これにより、ぼやけた画像が生じました。これらの方法は、基本的な解像度タスクや計算リソースに制限がある状況に適しているため、効率的に計算できます。 正則化ベースの手法 一方で、正則化ベースの手法は、画像再構成プロセスに追加の制約や先行条件を導入することで、超解像度の結果を改善することを目的としています。これらの技術は、画像の統計的特徴を利用して、再構築された画像の精度を向上させながら、細部を保存します。これにより、再構築プロセスにより多くの制御が可能になり、画像の鮮明度と細部が向上します。しかし、複雑な画像コンテンツを扱う場合には、過度の平滑化を引き起こすため、いくつかの制限があります。 これらの従来のアプローチにはいくつかの制限があるにもかかわらず、超解像度の強力な手法の出現への道を示しました。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.