Learn more about Search Results the Hub - Page 153
![VoAGI](/assets/img/voagi.jpg)
- You may be interested
- 『Amazon SageMaker を使用して、Talent.c...
- 「自己修正手法を通じて、大規模言語モデ...
- デシAIは、DeciDiffusion 1.0を公開しまし...
- 自然言語処理のための高度なガイド
- 「データレイクの形式の選択:実際に見る...
- 私のDeepMindインターンからメンターへの...
- ソウルでのオーケストラ指揮者として、ロ...
- 「ゲノムと気候の言語の解読:アニマ・ア...
- NVIDIAはAPECの国々と協力し、人々の生活...
- データサイエンティストのための10のJupyt...
- 「データの血統と現代データ管理における...
- 「太陽エネルギーが新たな展開を迎える」
- 動作の良さを把握する確率的AI
- 「説明的なデータの可視化の技術を取り入...
- カスタムレンズを使用して、優れたアーキ...
理論から実践へ:k最近傍法分類器の構築
k-最近傍法分類器は、新しいデータポイントを、k個の最も近い隣人の中で最も一般的なクラスに割り当てる機械学習アルゴリズムですこのチュートリアルでは、Pythonでこの分類器を構築および適用する基本的な手順を学びます
なぜ無料のランチがあるのか
機械学習の領域における「無料の昼食はない」定理は、数学の世界におけるゲーデルの不完全性定理を思い起こさせますこれらの定理はよく引用されますが、めったに...
Pandas 2.0 データサイエンティストにとってのゲームチェンジャー?
Pandas 2.0の効率的なデータ操作を可能にするトップ5の機能を活用する方法を学び、データサイエンススキルを次のレベルに引き上げましょう!
自動化、Ansible、人工知能
AnsibleがAIツールを統合開発環境に導入し、自動化コーディングの経験をよりシンプルでスムーズかつ効率的にする方法について学びましょう
ChatArenaをご紹介します:複数の大規模言語モデル(LLMs)間のコミュニケーションとコラボレーションを容易にするために設計されたPythonライブラリです
ChatArenaは、様々な巨大言語モデルを支援するために作成されたPythonパッケージです。ChatArenaにはすでにマルチエージェント会話シミュレーション環境が含まれています。参加者は周囲によって支援され、役割によって決定された相互作用を持つことができます。 ChatArenaにはすでにマルチエージェント会話シミュレーション環境が含まれています。キャラクターは様々な役割を担うことができ、雰囲気は協力を促します。LLMを使用することで、ゲームが終了するタイミングや、状態間の進行方法を決定することができます。 ChatArenaが互換性のあるLLMバックエンドには、GPT-3.5-turbo、GPT-4、Huggingface Pipeline(モデルハブから1900以上のモデルを持つ)、Cohereなどがあります。これにより、競合するLLM間のオープンなコミュニケーションと協力が促進され、ゲームの強度と多様性が高まります。 ChatArenaの便利なWebUIとCLIインターフェースのおかげで、誰でも簡単にChatArenaで異なるシナリオを試すことができます。直感的なインターフェースにより、新しいゲームを作成し、素早くプレイヤーのリクエストを実装し、簡単に異なるゲーム作成アプローチを試すことができます。 自分自身の言語ゲームを作成したい場合は、このガイドを参照してください。https://tinyurl.com/2t5us7fv 協調的AIの可能性と課題に対する考慮と対応が必要となっています。マルチエージェント言語ゲームに関して、ChatArenaは安全性とアライメントを理解するためのツールと第一歩です。 キー コンセプト プレイヤー – ゲームをプレイするには、「プレイヤー」である他のプレイヤーと相互作用できるエージェントが必要です。名前、インフラストラクチャ、機能はすべて、特定の参加者を識別するために貢献します。人間と大規模言語モデルの両方が対象です(LLM)。 バックエンド – プレイヤーが他のプレイヤーと通信する方法を定義するために、Python開発者は「バックエンド」と呼ばれるクラスを作成します。バックエンドは、人間またはLLM、またはその両方のハイブリッドである場合があります。バックエンドの名前、タイプ、およびパラメータは、その定義的特徴です。 環境 – Pythonでは、ドメインはゲームルールを定義するクラスです。名前、タイプ、およびパラメータがすべて協力して環境を指定します。 モデレーター – Pythonクラスとして、モデレーターはゲームのルールを指定します。その定義的特徴は、モデレーターの名前、クラス、および設定です。 Arena – Pythonでは、アリーナはゲームを定義するクラスです。特定のアリーナのパラメータには、名前、タイプ、およびサイズが含まれます。…
機械学習における再現性の重要性
どのように、データ管理、バージョン管理、実験トラッキングの改善アプローチが再現可能なMLパイプラインの構築に役立つか
Ludwig – より「フレンドリーな」ディープラーニングフレームワーク
産業用途の深層学習については、私は避ける傾向があります興味がないわけではなく、むしろ人気のある深層学習フレームワークが扱いづらいと感じています私はPyTorchとTensorFlowを高く評価しています
Python から Julia へ:特徴量エンジニアリングと機械学習
これは、応用データサイエンスのためのJuliaの始め方に関する私の2部作の第2部です最初の記事では、単純なデータ操作や実施例をいくつか紹介しました...
AWS CDKを介してAmazon SageMakerロールマネージャーを使用して、カスタム権限を数分で定義します
機械学習(ML)の管理者は、MLワークロードのセキュリティと完全性を維持する上で重要な役割を果たしています彼らの主な焦点は、ユーザーが最高のセキュリティで操作し、最小特権の原則に従うことを確認することですただし、異なるユーザーペルソナの多様なニーズに対応し、適切な許可ポリシーを作成することは、時にアジリティを妨げることがあります[…]
AIを活用した言語学習アプリの構築:2つのAIチャットからの学習
新しい言語を学び始めるときは、私は「会話ダイアログ」の本を買うのが好きです私はそのような本が非常に役立つと思っていますそれらは、言語がどのように動作するかを理解するのに役立ちます単に…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.