Learn more about Search Results 調査 - Page 153

Plotlyの3Dサーフェスプロットを使用して、地質表面を視覚化する

地球科学の分野においては、地下に存在する地質層の完全な理解が不可欠です層の正確な位置と形状を知ることで、...

新たな能力が明らかに:GPT-4のような成熟したAIのみが自己改善できるのか?言語モデルの自律的成長の影響を探る

研究者たちは、AlphaGo Zeroと同様に、明確に定義されたルールで競争的なゲームに反復的に参加することによってAIエージェントが自己発展する場合、多くの大規模言語モデル(LLM)が人間の関与がほとんどない交渉ゲームでお互いを高め合う可能性があるかどうかを調査しています。この研究の結果は、遠い影響を与えるでしょう。エージェントが独立に進歩できる場合、少数の人間の注釈で強力なエージェントを構築することができるため、今日のデータに飢えたLLMトレーニングに対して対照的です。それはまた、人間の監視がほとんどない強力なエージェントを示唆しており、問題があります。この研究では、エジンバラ大学とAIアレン研究所の研究者が、顧客と売り手の2つの言語モデルを招待して購入の交渉を行うようにしています。 図1:交渉ゲームの設定。彼らは2つのLLMエージェントを招待して、値切りのゲームで売り手と買い手をプレイさせます。彼らの目標は、より高い値段で製品を販売または購入することです。彼らは第三のLLMであるAI批評家に、ラウンド後に向上させたいプレイヤーを指定してもらいます。その後、批判に基づいて交渉戦術を調整するようにプレイヤーに促します。これを数ラウンド繰り返すことで、モデルがどんどん上達するかどうかを確認します。 顧客は製品の価格を下げたいと思っていますが、売り手はより高い価格で販売するように求められています(図1)。彼らは第三の言語モデルに批評家の役割を担ってもらい、取引が成立した後にプレイヤーにコメントを提供させます。次に、批評家LLMからのAI入力を利用して、再度ゲームをプレイし、プレイヤーにアプローチを改善するように促します。彼らは交渉ゲームを選んだ理由は、明確に定義されたルールと、戦術的な交渉のための特定の数量化目標(より低い/高い契約価格)があるためです。ゲームは最初は単純に見えますが、モデルは次の能力を持っている必要があります。 交渉ゲームのテキストルールを明確に理解し、厳密に遵守すること。 批評家LLMによって提供されるテキストフィードバックに対応し、反復的に改善すること。 長期的にストラテジーとフィードバックを反映し、複数のラウンドで改善すること。 彼らの実験では、モデルget-3.5-turbo、get-4、およびClaude-v1.3のみが交渉ルールと戦略を理解し、AIの指示に適切に合致している必要があるという要件を満たしています。その結果、彼らが考慮したモデルすべてがこれらの能力を示さなかったことが示されています(図2)。初めに、彼らはボードゲームやテキストベースのロールプレイングゲームなど、より複雑なテキストゲームもテストしましたが、エージェントがルールを理解して遵守することがより困難であることが判明しました。彼らの方法はICL-AIF(AIフィードバックからのコンテキスト学習)として知られています。 図2:私たちのゲームで必要な能力に基づいて、モデルは複数の階層に分けられます(C2-交渉、C3-AIフィードバック、C4-継続的な改善)。私たちの研究は、gpt-4やclaude-v1.3などの堅牢で適切に合致したモデルだけが反復的なAI入力から利益を得て、常に発展することができることを明らかにしています。 彼らは、AI批評家のコメントと前回の対話履歴ラウンドをコンテキストに応じたデモンストレーションとして利用しています。これにより、プレイヤーの前回の実際の開発と批評家の変更アイデアが、次のラウンドの交渉のためのフューショットキューに変換されます。2つの理由から、彼らはコンテキストでの学習を使用しています:(1)強化学習を用いた大規模な言語モデルの微調整は、高額であるため、(2)コンテキストでの学習は、勾配降下に密接に関連していることが最近示されたため、モデルの微調整を行う場合には、彼らが引き出す結論がかなり一般的になることが期待されます(資源が許される場合)。 人間からのフィードバックによる強化学習(RLHF)の報酬は通常スカラーですが、ICL-AIFでは、フィードバックが自然言語で提供されます。これは、2つのアプローチの注目すべき違いです。各ラウンド後に人間の相互作用に依存する代わりに、よりスケーラブルでモデルの進歩に役立つAIのフィードバックを検討しています。 異なる責任を負うときにフィードバックを与えられた場合、モデルは異なる反応を示します。バイヤー役のモデルを改善することは、ベンダー役のモデルよりも難しい場合があります。過去の知識とオンライン反復的なAIフィードバックを利用して、get-4のような強力なエージェントが常に意味のある開発を続けることができるとしても、何かをより高く売る(またはより少ないお金で何かを購入する)ことは、全く取引が成立しないリスクがあります。彼らはまた、モデルがより簡潔であるがより綿密(そして最終的にはより成功する)交渉に従事できることを証明しています。全体的に、彼らは自分たちの仕事がAIフィードバックのゲーム環境での言語モデルの交渉を向上させる重要な一歩になると期待しています。コードはGitHubで利用可能です。

データアナリストの仕事内容はどのように見えますか?

はじめに グローバルなデータ分析市場は、2026年までに年率28.9%で132,903百万ドルに達すると予想されています。データは世界中の企業の強力な支援力となっていますが、データアナリストとしてのキャリアをスタートするのは十分に正当なことです。データアナリストの仕事の説明には、データの収集、クリーニング、調整、翻訳に熟練が求められます。この分野で前進する計画がある場合は、データアナリストの役割と責任、および求職者が職に就くために期待される資格について説明します。 データアナリストとは何ですか? データアナリストは、大量のデータセットを収集、解釈、分析して有益な洞察とトレンドを明らかにします。彼らは統計的および分析的技術を使用してデータを調べ、パターンを特定し、意味のある結論を導き出します。データアナリストは、ビジネスや組織が情報を得て効果的な戦略を開発するのを支援することが重要です。彼らは、売上高、顧客デモグラフィック、ウェブサイトのトラフィック、ソーシャルメディアのエンゲージメントなど、多様なデータソースであるスプレッドシート、統計ソフトウェア、プログラミング言語などのツールを使用します。データ分析、可視化、レポート作成の専門知識を持つことで、データアナリストはビジネスのパフォーマンスを向上させ、データに基づく意思決定を促進します。 データアナリストの主な責任 重要なデータアナリストの責任には、アクション可能な洞察を生成し、意思決定プロセスを促進するためにデータを収集、分析、解釈することが含まれます。現在、データアナリストの仕事の説明の職務は、業界、会社、役割などの特定に基づいて異なる場合があります。 ここでは、異なる文脈で役立つ5つのデータアナリストの役割と責任を紹介します。 1. データの収集と分析 データアナリストの役割には、データベース、スプレッドシート、APIなどからデータを収集することが含まれます。アナリストは、データの正確性と一貫性を確保することが期待されています。さらに、データを分析しやすくするために変換することも含まれる場合があります。 2. データのクリーニングと前処理 分析を行う前に、データアナリストはしばしば生データをクリーニングして前処理する必要があります。これにより、分析に適したデータであることが確認されます。欠落しているデータの処理、データの検証の実行、外れ値の処理など、データクリーニングに使用される技術の熟練度を確保することも重要です。 3. データの探索と可視化 データアナリストの仕事の説明には、統計的技術とデータ可視化ツールの熟練度が必須とされることがよくあります。データの探索と可視化を行うことで、データ内のパターンを特定し、意味のある洞察を導き出すことが不可欠です。したがって、データアナリストは、Excel、SQL、Python、またはRなどのプログラミング言語などのツールを使いこなす必要があります。 4. パターン、トレンド、および洞察の特定 データアナリストの仕事の説明には、数値を精査し、パターン、トレンド、相関関係を探すというタスクが、データアナリストの主な責任として強調されています。統計的手法や分析技術を用いて、専門家は価値のある洞察を抽出するための解釈技術に精通している必要があります。 5. レポートとプレゼンテーションの作成 データアナリストの役割は、データドリブンの洞察や推奨事項を提供することで問題解決を支援することです。データアナリストは、意思決定者やステークホルダーと緊密に協力して、要件を理解し、データ分析に基づいてよりよい意思決定を行うのを支援します。彼らは、実行可能な推奨事項と洞察を提供して、ビジネス戦略を推進し、パフォーマンスを向上させます。 データアナリストのスキル 企業固有のデータアナリストの仕事の説明に基づいて、必要なスキルと資格のリストを作成することが理想的ですが、データアナリストとして競争に勝つためには、技術的な専門知識、分析思考力、強力なコミュニケーションスキルを組み合わせる必要があります。…

ChatGPTのデジタル商品をオンラインで販売するプロンプト

ChatGPTは、オンラインでデジタル製品を販売して収益を上げたい人にとって、ありがたい存在です

最初のLLMアプリを構築するために知っておく必要があるすべて

言語の進化は、私たち人類を今日まで非常に遠くまで導いてきましたそれによって、私たちは知識を効率的に共有し、現在私たちが知っている形で協力することができるようになりましたその結果、私たちのほとんどは...

再帰型ニューラルネットワークの基礎からの説明と視覚化

再帰型ニューラルネットワーク(RNN)は、順次操作が可能なニューラルネットワークです数年前ほど人気はありませんが、重要な発展を表しています...

より小さい相手による言語モデルからの知識蒸留に深く潜入する:MINILLMによるAIのポテンシャルの解放

大規模言語モデルの急速な発展による過剰な計算リソースの需要を減らすために、大きな先生モデルの監督の下で小さな学生モデルを訓練する知識蒸留は、典型的な戦略です。よく使われる2つのKDは、先生の予測のみにアクセスするブラックボックスKDと、先生のパラメータを使用するホワイトボックスKDです。最近、ブラックボックスKDは、LLM APIによって生成されたプロンプト-レスポンスペアで小さなモデルを最適化することで、励ましを示しています。オープンソースのLLMが開発されるにつれて、ホワイトボックスKDは、研究コミュニティや産業セクターにとってますます有用になります。なぜなら、学生モデルはホワイトボックスのインストラクターモデルからより良いシグナルを得るため、性能が向上する可能性があるためです。 生成的LLMのホワイトボックスKDはまだ調査されていませんが、小規模(1Bパラメータ)の言語理解モデルについては、主にホワイトボックスKDが調査されています。この論文では、彼らはLLMのホワイトボックスKDを調べています。彼らは、一般的なKDが課題を生成的に実行するLLMにとってより優れている可能性があると主張しています。シーケンスレベルモデルのいくつかの変種を含む標準的なKD目標は、教師と学生の分布の近似前方クルバック・ライブラー発散(KLD)を最小化し、KLとして知られています。教師分布p(y|x)と学生分布q(y|x)によってパラメータ化され、pがqのすべてのモードをカバーするように強制する。出力空間が有限の数のクラスを含むため、テキスト分類問題においてKLはよく機能します。したがって、p(y|x)とq(y|x)の両方に少数のモードがあることが保証されます。 しかし、出力空間がはるかに複雑なオープンテキスト生成問題では、p(y|x)はq(y|x)よりもはるかに広い範囲のモードを表す場合があります。フリーラン生成中、前方KLDの最小化は、qがpの空白領域に過剰な確率を与え、pの下で非常にありそうもないサンプルを生成することにつながる可能性があります。この問題を解決するために、コンピュータビジョンや強化学習で一般的に使用される逆KLD、KLを最小化することを提案しています。パイロット実験は、KLを過小評価することで、qがpの主要なモードを探し、空いている領域を低い確率で与えるように駆動することを示しています。 これは、LLMの言語生成において、学生モデルがインストラクター分布の長いテールバージョンを学習しすぎず、誠実さと信頼性が必要な実世界の状況で重要な応答の正確性に集中することを意味します。彼らは、ポリシーグラディエントで目標の勾配を生成してmin KLを最適化します。最近の研究では、PLMの最適化にポリシーオプティマイゼーションの効果が示されています。ただし、モデルのトレーニングはまだ過剰な変動、報酬のハッキング、および世代の長さのバイアスに苦しんでいることがわかりました。そのため、彼らは以下を含めます。 バリエーションを減らすための単一ステップの正則化。 報酬のハッキングを減らすためのティーチャー混合サンプリング。 長さのバイアスを減らすための長さ正規化。  広範なNLPタスクを含む指示に従う設定では、The CoAI Group、清華大学、Microsoft Researchの研究者は、MINILLMと呼ばれる新しい技術を提供し、パラメータサイズが120Mから13Bまでのいくつかの生成言語モデルに適用します。5つの指示に従うデータセットと評価のためのRouge-LおよびGPT-4フィードバックを使用します。彼らのテストは、MINILMがすべてのデータセットでベースラインの標準KDモデルを常に打ち負かすことを示しています(図1を参照)。さらに研究により、MINILLMは、より多様な長い返信を生成するのに適しており、露出バイアスが低く、キャリブレーションが向上していることがわかりました。モデルはGitHubで利用可能です。 図1は、MINILLMとシーケンスレベルKD(SeqKD)の評価セットでの平均GPT-4フィードバックスコアの比較を示しています。左側にはGPT-2-1.5Bがあり、生徒としてGPT-2 125M、340M、および760Mが動作します。中央には、GPT-2 760M、1.5B、およびGPT-Neo 2.7Bが生徒であり、GPT-J 6Bがインストラクターです。右側にはOPT 13Bがあり、生徒としてOPT 1.3B、2.7B、および6.7Bが動作しています。

TRACE(トレース)に会おう:グローバル座標トラッキングを使用した正確な3D人体姿勢および形状推定のための新しいAIアプローチ

多くの分野が、3D人間姿勢と形状(HPS)の最近の進歩を利用し、活用することができます。しかし、ほとんどのアプローチは一度に単一のフレームしか考慮せず、カメラに対する人間の位置を推定します。さらに、これらの技術は個人を追跡できず、その世界的な移動経路を取得することができません。ほとんどの手持ちのビデオは、カメラが揺れ動くジャイロスコープで撮影されるため、この問題はより複雑になります。 これらの問題を解決するために、哈爾濱工業大学、京東探索院、マックスプランク知能システム研究所、HiDream.aiの研究者たちは、5D表現(空間、時間、アイデンティティ)を使用して、状況における人物に関する新しいエンドツーエンドの推論を実装しました。提案されたTRACE技術には、さまざまな革新的なアーキテクチャ機能があります。特に、2つの新しい「Maps」を使用して、カメラの視点と世界の視点の両方から、人々の3Dモーションについて推論することができます。第2のメモリモジュールの助けを借りて、長期の不在の後も個人を追跡することができます。TRACEは、移動するカメラからグローバル座標の3D人間モデルを単一のステップで回復し、同時にその動きを追跡します。 彼らの目的は、各人のグローバル座標、3D位置、形状、アイデンティティ、およびモーションを同時に再構成することでした。これを行うために、TRACEは、まず、専用のブレーンネットワークを使用して、各サブタスクをデコードする前に、時間情報を抽出します。まず、TRACEは、ビデオとモーションを別々の特徴マップにエンコードするために2つの並列軸を使用し、1つは時間的な画像(F’i)用で、もう1つはモーション(Oi)用です。これらのフィーチャを使用して、検出およびトラッキングサブツリーが複数の対象を追跡して、カメラ座標内の3D人間のモーションを再構成します。 推定された3Dモーションオフセットマップは、2つのフレーム間の各被写体の相対的な空間移動を示します。革新的なメモリユニットは、推定された3D検出と3Dモーションオフセットを使用して、被写体のアイデンティティを抽出し、カメラ座標内で人間の軌跡を構築します。小説のWorldブランチは、世界の座標系で被写体の軌跡を推定するために、世界のモーションマップを計算します。 堅牢な5D表現であっても、実際の世界のデータがないため、グローバルな人間の軌跡推定のトレーニングと評価の欠如が続いています。ただし、自然環境の動的カメラムービー(DCビデオ)のグローバル人間軌跡とカメラ姿勢をコンパイルすることは困難です。したがって、チームは、シミュレートされたカメラモーションを使用して、静止カメラで取得したワイルドフィルムをDCビデオに変換し、DynaCamという新しいデータセットを生成しました。 チームは、DynaCamデータセットと2つのマルチパーソンインザワイルドベンチマークを使用して、TRACEをテストしました。3DPWに関しては、TRACEがSOTAの結果を提供します。MuPoTS-3Dでは、TRACEが、長期の遮蔽下で人間を追跡するための既存の3D表現ベースのアプローチや検出によるトラッキング方法よりも優れた結果を達成します。調査結果は、DynaCamにおけるTRACEがGLAMRを上回ることを示しています。 チームは、将来、複雑な人間の動き、3Dシーン、およびカメラの動きを含むBEDLAMなどのトレーニングデータを使用した明示的なカメラモーション推定を調査することを提案しています。

データアナリストは良いキャリアですか?

労働統計局(BLS)によると、データアナリストを含む研究アナリストの雇用は、2021年から2031年までに23%増加すると予想されています。データ分析のキャリアが著しく成長することは、有望な候補者にとっても重要な展望を示しています。それは一般に提供されるサービスや製品に深い影響を与えます。データアナリストとして、コンピュータサイエンス、統計学、数学の技術的な知識と問題解決能力および分析能力を持つ必要があります。この分野は、最先端のテクノロジーを使用する機会が豊富であり、個人的および職業的な成長のための機会を提供します。しかし、この興味深いキャリアパスには、どのような期待が置かれているのでしょうか。企業にデータ分析サービスを提供する理想的な候補者に課せられる期待について探ってみましょう。 データアナリストとは何ですか? データ分析とは、ビジネスの利益に活用するために、データから情報を得ることまたは分析することを指します。この仕事の役割と責任には、以下が含まれます。 分析のためのデータ収集。これには、さまざまな方法を通じてさまざまなタイプのデータを発見または収集することが含まれます。例としては、調査、投票、アンケート、およびウェブサイトの訪問者特性の追跡が挙げられます。必要に応じて、データセットを購入することもできます。 プログラミング言語を使用して、前のステップで生成されたデータ、つまり生データをクリーニングすることが必要です。名前は、処理が必要な外れ値、エラー、重複などの不要な情報の存在を示しています。クリーニングプロセスは、データの品質を向上させて利用可能にすることを目的としています。 データは、今後モデル化する必要があります。これには、データに構造と表現を与えて整理することが含まれます。また、データの分類およびその他の関連プロセスを行うことも必要です。 したがって、形成されたデータは複数の目的に役立ちます。使用法は問題文によって異なり、解釈方法も問題文によって異なります。データの解釈は主に、データ内のトレンドやパターンを見つけることに関係しています。 データのプレゼンテーションも同様に重要なタスクであり、情報が意図した通りに閲覧者や関係者に届くようにすることが最も重要な要件です。これには、プレゼンテーションおよびコミュニケーションスキルが必要です。データアナリストは、グラフやチャートを使用し、報告書の作成や情報のプレゼンテーションを行うことがあります。 データアナリストになる理由 データアナリストになるためには、複数の理由があります。以下は、最も重要な5つの理由です。 高い需要: データの生成が増加したことにより、未処理のデータが大量に存在しています。それには、企業が活用できる多くの秘密が含まれます。このタスクを実行できる個人の要件は急速に増加しており、標準的な要件は年間3000ポジションです。 ダイナミックなフィールド: データアナリストの仕事は、課題に対処し、問題を解決することに喜びを感じる場合、多くのものを提供します。毎日興味深く、新しい課題があり、分析思考とブレストストーミングが必要な場所です。また、旅の中で多くを学ぶこともでき、自己改善に貢献します。 高い報酬: データアナリストのポジションの報酬は高く、キャリアを追求する価値があります。給与の増加は、業界によって異なり、一部の分野ではボーナスを含む高い収入が約束されています。 普遍性: データアナリストの要件は、特定の分野に限定されるものではありません。すべての業界が多くのデータを生成し、情報に基づく論理的な意思決定が必要です。したがって、背景や興味に関係なく、すべての専門分野に開かれています。 キャリアの選択をリード: 熟練したデータアナリストは、ポジションと会社に価値をもたらすことができます。成長、昇進、追加の福利厚生の可能性はどこでも開かれています。グループをリードしたり、教えたり、競争したり、ワークフォースの文化を形成することができるように、キャリアの選択をリードすることができます。 需要と将来の仕事のトレンド 現在、データアナリストの需要は高く、良い報酬が期待できます。現在のデータ生成の速度に基づいて、将来的には需要がさらに高まると予想されています。新しいテクノロジーの生成とデータ収集の容易化により、将来的には才能に新しい機会が提供されるでしょう。将来のデータアナリストの予想される新しいジョブロールには、以下が含まれます。 AIの機能性と適合性を説明する。新しく開発された機能の品質分析。 ビジネスオペレーションとデータ処理のリアルタイム分析の組み合わせに取り組む。これにより、戦略に基づいた計画に向けて導かれます。…

PDFの変換:PythonにおけるTransformerを用いた情報の要約化

はじめに トランスフォーマーは、単語の関係を捉えることにより正確なテキスト表現を提供し、自然言語処理を革新しています。PDFから重要な情報を抽出することは今日不可欠であり、トランスフォーマーはPDF要約の自動化に効率的な解決策を提供します。トランスフォーマーの適応性により、これらのモデルは法律、金融、学術などのさまざまなドキュメント形式を扱うのに貴重なものになっています。この記事では、トランスフォーマーを使用したPDF要約を紹介するPythonプロジェクトを紹介します。このガイドに従うことで、読者はこれらのモデルの変革的な可能性を活かし、広範なPDFから洞察を得ることができます。自動化されたドキュメント分析のためにトランスフォーマーの力を活用し、効率的な旅に乗り出しましょう。 学習目標 このプロジェクトでは、読者は以下の学習目標に沿った重要なスキルを身につけることができます。 トランスフォーマーの複雑な操作を深く理解し、テキスト要約などの自然言語処理タスクの取り組み方を革新する。 PyPDF2などの高度なPythonライブラリを使用してPDFのパースとテキスト抽出を行う方法を学び、さまざまなフォーマットとレイアウトの扱いに関する複雑さに対処する。 トークン化、ストップワードの削除、ユニークな文字やフォーマットの複雑さに対処するなど、テキスト要約の品質を向上させるための必須の前処理技術に精通する。 T5などの事前学習済みトランスフォーマーモデルを使用して、高度なテキスト要約技術を適用することで、トランスフォーマーの力を引き出す。PDFドキュメントの抽出的要約に対応する実践的な経験を得る。 この記事はData Science Blogathonの一部として公開されました。 プロジェクトの説明 このプロジェクトでは、Pythonトランスフォーマーの可能性を活かして、PDFファイルの自動要約を実現することを目的としています。PDFから重要な詳細を抽出し、手動分析の手間を軽減することを目指しています。トランスフォーマーを使用してテキスト要約を行うことで、文書分析を迅速化し、効率性と生産性を高めることを目指しています。事前学習済みのトランスフォーマーモデルを実装することで、PDFドキュメント内の重要な情報を簡潔な要約にまとめることを目指しています。トランスフォーマーを使用して、プロジェクトでPDF要約を合理化するための専門知識を提供することがプロジェクトの目的です。 問題の説明 PDFドキュメントから重要な情報を抽出するために必要な時間と人的労力を最小限に抑えることは、大きな障壁です。長いPDFを手動で要約することは、手間のかかる作業であり、人的ミスによる限界と、膨大なテキストデータを扱う能力の限界があります。これらの障壁は、PDFが多数存在する場合には効率性と生産性を著しく阻害します。 トランスフォーマーを使用してこのプロセスを自動化する重要性は過小評価できません。トランスフォーマーの変革的な能力を活用することで、PDFドキュメントから重要な洞察、注目すべき発見、重要な議論を包括する重要な詳細を自律的に抽出することができます。トランスフォーマーの展開により、要約ワークフローが最適化され、人的介入が軽減され、重要な情報の取得が迅速化されます。この自動化により、異なるドメインの専門家が迅速かつ適切な意思決定を行い、最新の研究に精通し、PDFドキュメントの膨大な情報を効果的にナビゲートできるようになります。 アプローチ このプロジェクトにおける私たちの革新的なアプローチは、トランスフォーマーを使用してPDFドキュメントを要約することです。私たちは、完全に新しい文を生成するのではなく、元のテキストから重要な情報を抽出する抽出的テキスト要約に重点を置くことにします。これは、PDFから抽出された重要な詳細を簡潔かつ分かりやすくまとめることがプロジェクトの目的に合致しています。 このアプローチを実現するために、以下のように進めます。 PDFのパースとテキスト抽出: PyPDF2ライブラリを使用してPDFファイルをナビゲートし、各ページからテキストコンテンツを抽出します。抽出されたテキストは、後続の処理のために細心の注意を払ってコンパイルされます。 テキストエンコードと要約: transformersライブラリを使用して、T5ForConditionalGenerationモデルの力を利用します。事前に学習された能力を持つこのモデルは、テキスト生成タスクにとって重要な役割を果たします。モデルとトークナイザを初期化し、T5トークナイザを使用して抽出されたテキストをエンコードし、後続のステップで適切な表現を確保します。 要約の生成:…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us